
Compiler Compiler facilities

corresponding to terms is scanned to ensure that plus
or minus . term . terms is an alternative when compiling
the instruction

-> 1 unless terms resolves into plus or minus . term c
. terms

At run time, the tree whose address is in terms is
inspected to see whether it actually conforms to the
right-hand-side. If it does the addresses of its principal
sub-trees are planted in plus or minus, term and terms;
otherwise control passes to the instruction labelled 1.

Conclusion
The system just described uses integers to refer to trees

and sub-trees. A theoretically more satisfying scheme
using more formal concepts of type and reference for
this purpose has been described by Brooker and Rohl
(1965). The present scheme, however, has the advantage
that it can be fairly easily grafted on to any compiler
in which integers can serve as store addresses.

The facilities have been part of the Atlas Autocode
(AA) compiler since April 1966, and have found a wide
variety of uses. A compiler for a language called BB,
which is a subset of AA, has been written and debugged,

and a compiler for a logical design language is at present
under development.

They have found further use in more general data
processing jobs. The logging program mentioned
earlier has been re-written, and a program to process all
the applications for places in this department's honours
course has been constructed. This program accepts as
data (j) the original application of the student to the
U.C.C.A., (ii) any updating material such as offers from
other universities and interview assessments, and
(iii) interrogatory statements about the state of appli-
cations, such as

LIST ALL NAMES INTERVIEWED IN
ALPHABETICAL ORDER

Two translation programs have also been written.
One converts an AA program from its normal mode
into upper case delimiter mode (see Brooker, et ah,
1967) and at the same time allows the user to change
whatever identifiers he chooses throughout the program.
The second converts ALGOL procedures into AA
routines. This is in an undeveloped state yet but it is
hoped shortly to be able to translate completely some
90 % of the published algorithms.

References
BROOKER, R. A., MORRIS, D., and ROHL, J. S. (1967). "Experience with the Compiler Compiler", The Computer Journal, Vol. 9,

p. 345.
BROOKER, R. A., and ROHL, J. S. (1965). "Simply Partitioned Data Structures", Proceedings of a Machine Intelligence Workshop

1965 (Ed. Michie, to be published by Oliver and Boyd).
BROOKER, R. A., ROHL, J. S., and CLARK, S. R. (1966). "The Main Features of Atlas Autocode", The Computer Journal,

Vol. 8, p. 303.

Book Review

A Syntax-Oriented Translator, by P. Z. Ingerman, 1966;
131 pages. (New York: Academic Press, 48s.)

It is difficult to review a book the chief deficiencies of which
are announced as such by the author by the end of the third
paragraph of his preface. Indeed, the author further dis-
arms us by overstating the case against himself and his book;
he has not committed hubris and the wrath of the gods will
be withheld so that he may live to assay Olympus yet again.

The title well describes the book, which was originally
intended "for the home compiler-writer". When the author
concluded that people do not write compilers at home he
forgot that they may be required to do so in a provincial
computer installation, very often a more difficult task. It is
thus sad that the book needs a "patient reader". Would it
have been possible to produce a simple cookbook, three
times the size and five times the value to the trade? In the
present overburdened state of education everywhere we need
more instruction manuals.

A reader with enough persistence can certainly use this
book to help implement a syntax-oriented translator, and to

devise the language and machine descriptions for some cases
of interest. The major, all too common, defect of the book
is the use of the assignment statement of ALGOL and
FORTRAN as the worked example. We hope for an author
who will choose the COBOL option "Move Corresponding",
preferably from a group of computational fields to a display
record; or perhaps the "Preserve", "Restore", or "Task"
options of PL/1. These are examples where this type of
translator might show advantages over the "operator/operand
stacks" method of Dijkstra, and Randell and Russell, which
is perfectly adequate for arithmetic expressions and perfectly
general if designed properly to be table-driven.

More precisely, given a machine with basic software and
an arbitrary language not foreseen by the designers of the
software to implement on that machine, then the design of
the structure of the object program to model the semantics
of the language is far more difficult than the syntax analysis
of the language. But a generalized syntax analyzer is a
worthwhile convenience.

H. D. BAECKER

352

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/352/390209 by guest on 19 April 2024




