
An Atlas Autocode to ALGOL 60 translator

By A. T. McEwan*

An Atlas Autocode to ALGOL 60 program translator has been used to translate a large number
of programs developed by the users of the Crlpps Computing Centre. The translator was written
in Atlas Autocode in a machine independent subset, and successfully translated itself. It developed
through four main phases in a modular form using earlier working versions designed to achieve
partial translation.

1. Introduction
The decision to write the translator was taken in March
1965 when Nottingham University ordered a KDF9
computer. Most user programs were written in Atlas
Autocode, and at that time no Atlas Autocode compiler
was available for KDF9. In fact, an excellent KDF9
compiler for the language has now been provided by
the Edinburgh University Computer Unit. Nevertheless,
the translator has still proved a sound investment, as
users may translate their Atlas Autocode programs or
subroutines for subsequent use as, or in, ALGOL
programs, and take advantage of the KDF9 Post
facilities offered for program text editing. It was
necessary that some form of working translator should
be made available by February 1966, the delivery date
of the KDF9.

The Flowers Report (Council of Scientific Policy
(1966), p. 43, para. 159) alludes to the need for such a
translator to be written:

"There is one special difficulty that arises in
Universities which have made substantial use of Atlas
Autocode on the Manchester, London and Chilton
machines and which may therefore have large numbers
of programs already written in this language. It is
evident that none of the new series are to be provided
with compilers for this language and it will be necessary
for those Universities wishing to continue its use to
provide a compiler on their own or in collaboration
with other similarly situated institutions. The
Working Group sought out the views of the computer
manufacturers on the provision of compilers for
institutions whose programs are in Atlas Autocode.
It appeared that if Universities wished to continue to
use this language they should consider producing
their own compiler."

At first glance, the programming languages Atlas
Autocode and ALGOL appear very similar, but a closer
inspection reveals some fundamental differences. The
most important is that the Atlas Autocode language has
dummy subroutine headings or declarations, in addition
to the actual subroutine headings, which enable Atlas
Autocode to be compiled statement by statement since
all names are declared in advance. Other differences
will be indicated below.

* Cripps Computing Centre, University of Nottingham.

When the definite need for such a translator had been
established, the problem of implementation arose. Apart
from the Director, the Computing Centre had at that
time only one member of academic staff—the author.
He was the sole programmer available for such a project,
but he also had many other commitments concerning the
Data Link service to Manchester, and it could be seen
that these duties would increase rather than decrease as
the installation date for the KDF9 approached.

Macro-generation techniques offered a practical
approach for part of the problem. For example, the
Compiler Compiler (Brooker, MacCallum, Morris and
Rohl, 1962) seems the best solution, especially as
"phrase" and "format" definitions were also being
implemented (and are now available) in the Manchester
Atlas Autocode Compiler. Unfortunately, Compiler
Compiler programs do not run on KDF9, and at that
time it was desirable, if not essential, that a working
version of the translator be implemented for KDF9.
There was in fact no macro-generator common to both
Atlas and KDF9, and the writing and debugging of
such a program was considered too risky since its
abandonment would have left nothing to help in trans-
lations. For similar reasons the idea of designing an
intermediate machine-independent language, into which
Atlas Autocode would be translated before translation
into ALGOL, was not followed up, although it was
borne in mind when writing the translator. Since it
was unlikely that a series of translators for different
programming languages would be written, this idea was
also not very practicable.

A crude approach had to be adopted, and so the
translator program was bootstrapped in a series of
complete sub-sets of the final translator specification,
with each new program making use of the previous one.
Had the project been suffocated, there would at least
have been a program available to do some of the dreary
task of translation.

2. Objective
The obvious objective is the translation into the

ALGOL 60 language of any program written in Atlas
Autocode in such a way that the ALGOL program can
be compiled without any further alteration. This could
not be achieved because of several fundamental
differences:

353

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/353/390215 by guest on 19 April 2024

Atlas Autocode to ALGOL 60 translator
One facility not available in ALGOL is a counterpart

to the store mapping routines available in Atlas Auto-
code. These routines essentially compute the address of
a store location. For example:

real map x (integer i,j)
result = addr(a(i))+#*(i—l)+j—l
end

calculates the address of the (i,j)th element of a real
lower triangular matrix stored by rows starting with
x(l, 1) at location where the vector element a(l) is
stored. The crucial point is in the use of such functions,
as they may appear on the left- or right-hand side of an
assignment statement. For example:

It would be easy enough to implement store mapping
functions in ALGOL if they were not used as assignment
variables, but a procedure call in the ALGOL 60
language is not permissible as an assignment variable.

Another difference is the use by Atlas Autocode
compilers of "dope vectors" in conjunction with each
array declared. These vectors contain information about
all the bounds and the dimension of each array. The two
standard Atlas Autocode subroutines "dim" and
"bound" give the dimension and bounds of any specified
array, and consequently matrix subroutines need only
pass down array names. The standard matrix operations
routines available in Atlas Autocode include, for
example:

matrix add (arrayname A, B, C)
matrix sub (arrayname A, B, C)
eqn solve (arrayname A, b, realname dei)

The first two perform the matrix operations

= B + C
= B- C

The "eqn solve" routine solves the set of linear first
order equations Ax = b and leaves the value of the
determinant of the matrix A in the variable specified in
the routine call; the solution vector over-writes the
vector b.

3. Specification
Apart from the differences mentioned above, the

translator converts programs written in the Atlas
Autocode language as specified in the Atlas Autocode
Mini-Manual (see Lunnon and Riding, 1965) into the
official ALGOL 60 language; i.e. the facilities currently
available in the AB compiler. Atlas ALGOL type
input/output procedure headings, which are conveniently
similar to those of Atlas Autocode, are implemented.
As far as possible the translator is machine-independent.

Since symbolic character representation is available in
the Atlas Autocode language, it was felt that programs
containing the machine dependent numerical representa-
tion of characters need not be guaranteed to work
correctly after translation.

4. Implementation
Having determined the general strategy of implemen-

tation, a basic decision had to be made concerning the
use of a programming language for the translator itself.
ALGOL, being available on most computers seems the
obvious choice (thereby making the translator available
to any computer with an ALGOL compiler, and con-
sequently the KDF9), but Atlas Autocode is also a
candidate since the translator itself could be translated
into ALGOL, providing working versions in both
languages. Atlas Autocode was chosen. As mentioned
above, the Atlas Autocode language contains symbolic
character representation which enables the translator to
be independent of the machine's internal character code.
Another useful facility known as "define special compiler"
enables part of a program to be compiled and written
onto magnetic tape, so that it can be read down later
and completed. Another by no means trivial considera-
tion was that the author had to punch his own tapes,
and time could be saved by using upper case delimiters
(e.g. begin can be typed BEGIN), a facility then available
in Atlas Autocode but not in Atlas ALGOL. It is now
implemented for ALGOL (Atlas ALGOL Paper No. 10,
1966).

The translator developed through four phases.
Phase 1 provides text editing only, and takes no account
of the context in which symbols occur. Phase 2 contains
the backbone of the translator. It contains a large
number of routines which were extended as more
facilities were translated, and takes account of the
context in which symbols appear. Phase 3 makes a
distinction between the types of variables (integer, real,
array, switch, routine, etc.) and their properties. Phase 4
rearranges the translated routines (now procedures) into
their correct position, with other declarations at the
head of the blocks in which they appear. During this
phase the translated program is reorganized, and a
line-reconstruction routine is added to read Atlas coded
paper tape.

Originally it was intended to have another phase to
provide further syntax checking. This proved to be
unnecessary, since the program is a translator and not
a compiler. It seems reasonable to assume that only
working programs or subroutines will be submitted, but
a syntax checker to remove un-translatable facilities from
the incoming text might be useful, so the translator was
written to allow for this possible addition in ALGOL
or Atlas Autocode.

Phase 1
During this phase the input of program text is covered

by three subroutines. The first

read ch (integer name i)

reads the next symbol from the reconstructed line of data
(program text). Spaces and underlined spaces are
ignored. Upper case letters are converted into under-
lined lower case letters if the appropriate flag is set. It
also ignores c when followed by a newline.

354

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/353/390215 by guest on 19 April 2024

Atlas Autocode to ALGOL 60 translator

The second subroutine

read character (integer name /)

ignores or assigns to delimiter words a negative numerical
character value. Assuming that only valid delimiter
words are being tested, an initial switch is made on the
first letter of the delimiter word, followed by a tree sort
until the delimiter word is uniquely determined. This
usually involves looking at the first two or three letters
only. A final check is made by testing that the last
letter of the delimiter word is correct; for example, only
the first two letters and the y of the delimiter word
array are examined. The following delimiter words are
ignored:

compile array bound check;
production run;
upper case delimiters;

and normal delimiters;

except that the last two set or unset a flag denoting
whether upper case delimiters or normal delimiters are
currently being used.

The third subroutine

read instruction 1

reads into a buffer a pseudo-statement. A pseudo-
statement consists of either a single delimiter word or
an expression (assignment or conditional) terminated by
a newline, a semi-colon, a colon, or a delimiter word.
This subroutine also converts the symbols -n, 2 and \
into 3-14159265359, f 2, and -5 respectively. If the
first character of the pseudo-statement is a | then it is
replaced by the character value —14 which corresponds
to the delimiter word comment. This subroutine also
inserts extra multiplication signs where they are not
explicitly given, and replaces symbolic character repre-
sentations by their internal numeric values.

For example, these three routines from the input text:

upper case delimiters
delta = 2a*b2(sinQan)+b2) IF z = 'a' OR c

(x = '/>' AND y = 3)
normal delimiters; begin
C = D-\-a; | example statements
stop if C = 0

produce the pseudo-statements

(i) delta = 2*a*b \ 2*(sin(-5*a*3-14159265359)
+b f 2) if

(ii) z = 96 or
(iii) (x = 97 and
(iv) y = 3) [newline]
(v) begin

(vi) C = D+a
(vii) comment

(viii) example statements [newline]
(ix) stop
(x)if

and (xi) C = 0 [newline]

where the delimiter words if, or, and, begin, comment
and stop have character values —18, —21, —10, —12,
—14, and —29 respectively. The [newline] shows that
the character value for newline is also present in the
buffer. Empty lines are ignored.

The development to this stage started with a simple
read character subroutine "read ch". A "read instruc-
tion" subroutine and a new "read character" subroutine
were subsequent additions.

The output subroutines had a similar history, starting
as a simple output loop and a pseudo-print symbol
routine called "pprint symbol".

The latter was extended to take account of symbols
with negative values, which cause an entry to a
"pcaption" subroutine, (pseudo-caption), which outputs
the corresponding caption. For example the instruction
"pprint symbol (—14)" gives rise to an entry to the
"pcaption" subroutine; there a switch leads to the
following line of program:

c(14): caption comment; return

All such delimiters are listed in this routine, so it is a
simple matter to change the captions to accommodate
the quirks of ALGOL compilers for other machines.

The phase 1 main program is a loop containing calls
for the two routines "read instruction" and "scan and
output". The latter was developed from a simple
"pprint symbol" loop to replace the Atlas Autocode
symbols -> and f by the delimiter words goto and
exp respectively.

Phase 2
Atlas Autocode instructions either begin with a

delimiter word, or contain no delimiter words, or are
conditional instructions. This phase is based on a
routine which recognizes the three types of statement.
For those statements which commence with delimiters a
switch is determined by the delimiter word's assigned
value. At most of the switch labels there is an instruction
which sets a flag to denote the type of statement (e.g. a
declaration), followed by an entry to a routine. In
phase 2 no account is taken of the variable types, and
some of the routines are virtually copy text.

The setting of flags for statement types enables extra
blocks in the object program to be opened when a
declaration does not immediately follow another
declaration or block heading. (Routine headings are
classed as declarations, but in this case new blocks are
not necessary.) For example:

begin
integer n, i,j
read («)
array a(\: n, 1:10)
cycle / = 1, 1, n
cycle y = 1, 1, 10

repeat
repeat
end

355

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/353/390215 by guest on 19 April 2024

Atlas Autocode to ALGOL 60 translator

becomes

begin
integer n, i,j;
read («);
begin
array a(\: n, 1:10);
for /:= 1 step 1 until n do begin
for /:— 1 step 1 until 10 do begin
o(i,])'•= '5 *abs(x +y +abs(u+v)exp2);
end;
end;
end;
end: end;

This example shows the expansion of modulus and cycle
instructions. The translation of modulus signs is
achieved by counting them and replacing each by the
appropriate ALGOL equivalent. For example:

\x+y+2(3 + \\u+v\+6\)\

would undergo three stages in translation. The first
has the commencing modulus sign changed to "abs("
(or rather the appropriate pcaption number), then the
signs are counted to find the corresponding closing
modulus, ignoring those following an operation sign
(e.g. + , —); a count is also kept of any opening and
closing round brackets, adding or subtracting 1 for each
bracket respectively. This count, originally set to zero,
has to be zero before a modulus sign can be changed.
After the first scan through, the statement becomes:

abs(x+y+2*{3 + \\u+v\+6\))

it is then processed and the next modulus sign translated
similarly to yield

abs(x+y+2*(3+abs(\u+v\ +6)))

and again for the last pair to give

abs(x+y+2*(3+abs(abs(u+v)+6y)) as required.

The translation of the delimiter words return and
result requires an unconditional jump to the end of the
block. With this in mind the end of the block is marked
with the label "end". For example:

return if a > b;

end
becomes

if a > b then goto end;

end: end

Similarly for stop. The last end of the program
(which corresponds to the Atlas Autocode end of
program) is labelled "end of program: end", result
cannot be translated during phase 2, as the name of the
procedure in which it appears is not available.

Counts are initiated on entry to the routines dealing
with the delimiter words begin, routine and fn. These
counts keep track of all blocks opened and closed.
When the end matching the original delimiter is recog-
nized the extra ends to match additional inserted begins
are output. During phase 2 the conditional statements
are the most complicated to decipher. The reversed
conditional statement surprisingly proved the easiest to
translate. An example of such a statement is:

a = b if (x > 0 and y < 1) or z = 2

where the condition or Boolean expression follows the
delimiter word if. The pseudo-statement "a = b if" is
read into a buffer, and is examined to determine whether
it is one of the following Atlas Autocode types of
statement which are to be ignored:

routine trace on if a > b
jump trace off if c < d
queries on unless x < y
array bound check off unless y # z

If the conditional statement is not ignorable, then
the condition is read into the buffer and analyzed,
pseudo-statement by pseudo-statement. The alternative
ALGOL-like form

if (x > 0 and y < 1) or z = 2 then a = 6

requires all the pseudo-statements in the conditional
expression to be stored before the statement following
the delimiter word then can be examined to determine
whether it is one of the test facilities—routine trace,
etc.—that are to be ignored.

Two flags are set during the evaluation of the con-
ditional part to control the use of the "scan and output"
routine; the first denotes a Boolean expression, and the
second whether it is an if or unless type condition. If
the pseudo-statement being analyzed is not part of a
Boolean expression, then a ":" is automatically inserted
before any " = " signs. If the Boolean expression is part
of an unless statement, then it is inverted, for example:

a = b if (x > 0 and y < 1) or z = 2

is translated into

if (x > 0 and y < 1) or z = 2 then a :— b

but the statement

a = b unless (x > 0 and y < 1) or z = 2

has to be inverted

if (x < 0 or y > 1) and z =£ 2 then a := b

As already mentioned, a pseudo-statement can end
with a colon. If this happens for the first part of a
statement, the statement must be complete and can
be identified as an ordinary label or switch label. Atlas
Autocode has integer labels; although these are per-
missible in the ALGOL 60 specification, they are not
usually implemented, so they are converted into names

356

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/353/390215 by guest on 19 April 2024

Atlas Autocode to ALGOL 60 translator

by routine "scan and output", which prefixes and post-
fixes the letter "/". This avoids confusion with any
names the Atlas Autocode programmer may use, as
letters after numbers are not permitted in Atlas Auto-
code names. Primes are not allowed in ALGOL, so
names with primes are prefixed with the letter p and the
integer of the number of primes. For example:

integer x, x', x", x'";

becomes

integer x, plx, p2x, p3x;

In the phase 2 translator the output routines have
become complicated.

Phase 3

Phase 3 was developed to overcome the only major
problem remaining. This is, the conversion of variable
declarations and routine headings. From this a dis-
tinction can be made between array and routine names,
e.g. to determine whether round or square brackets are
required in the ALGOL object program.

To make the conversion, a "property list" must be
kept of all names used in the Atlas Autocode program.
This is organized by the routines

set up pi
add to pi

and look up pi.

"set up pi" sets up a property list of all the standard
subroutine names. These are divided into three groups;
those which are too machine-independent to translate,
those which the translator can modify or provide, and
those which the user has to add, or change the call for,
e.g. the matrix routines.

"add to pi" adds names to the property list, together
with an indication of the type of name, e.g. real or
integer, array, switch, routines, etc. The switch indication
also shows—indirectly—the lower bound of the switch.

"look up pi" looks up the name in the property list to
determine its type.

With the aid of these routines the example text

integer /, j , n
array x, y{\ :100), z(l :2, 1:100)
routine spec triangle mult (array name A, B, c

integer n integer name m)
read (n)
read array (x); read array (y)
triangle mult (x, y, n,j)

cycle i = 1, 1, 100
z(U)=X02

repeat

is translated into

integer i,j,n;
array x,y [1:100], z[l :2, 1:100];
n: = read;
read array (x); read array (y);

triangle mult (x, y, n,j);
for j : = 1 step 1 until 100 do
begin

4 1 , i] : = y[i] exp 2;
end;

The switch list declaration

switch o, 6(2:6), c (- 4 : - 3)

is translated into

switch a:= all, all, all, a4l, aSl;
switch b:= bll, bll, b31, bAI, b5l;
switch c := c\l, ell;

while the switch jumps

are translated to

goto a [2 - l] , goto b[i—l],

goto c[(a exp 2+3) exp^2 + i + 5],

and the switch labels

a(l):, Z>(3): and c (- 3) :

thus

all:, bll: and ell:.

For routine headings the types of parameters and their
names are added to the property list with an indication
whether they are addr parameters or not.

The following routine headings

(a) routine mat mult (addr si, si, s3, integer n, m)
(b) routine matrix mult (array name a, b, c)

and (c) real fn F (real fn, /, array name a, real x, y c
integer name i)

are translated

(a) procedure mat mult (s\, si, s3, n, m);
value s\, si, s3, n, m;
integer si, si, s3;
integer n, m;
begin

(b) procedure matrix mult (a, b, c);
array a, b, c;
begin

and (c) real procedure F (/, a, x, y, i);
value x, y;
real procedure/;
array a;
real x, y;
integer /;
begin

The procedure call

mat mult (a(l, 1), b(l, 1), c(l, 1), n, m)

becomes

mat mult (addr(a(l, 1)), addr{b{l, 1)), addr (c(l, 1)), n, m)

357

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/353/390215 by guest on 19 April 2024

Atlas Autocode to ALGOL 60 translator

where "addr" is an integer procedure which calculates
the address of the variable given as its entry.

This translation of routine headings is done by the
four routines

procedure
scan 1
scan 2

and scan 3

The initial entry is to routine "procedure", which dis-
tinguishes between actual routine headings and their
specifications; if it is an actual routine heading with
parameters, these are read into a buffer by "scan 1",
with symbol editing to ensure a uniform entry. For
example:

real x, y integer /, integer name j)

is stored in the form

- 3 x , y , - 2 i , - 2 - 1 0 j)

remembering that the negative integers are the delimiter
word values. Note that an extra comma has been
inserted.

The buffer is then scanned by "scan 2" and a value
list drawn up, thus for the above example:

value x, y, i;

On the third scan by "scan 3" the parameter type list
is produced; for the above example:

real x, y; integer i; integer j ;

and finally an entry is made to the pcaption routines
for the delimiter word begin.

routine and fn, specs are treated in the same way as
actual routine headings, except that they produce no
output and so appear to be ignored.

The delimiter word result can be translated in phase 3
by using the property list to find the last integer fn,
real fn, or fn name. For example, the block of program

fn fourier (integer a, b, n)
result = 2n(sin(a)+sin(b)) t h\n;
end

becomes

real procedure fourier (a, b, ri);
value a,b,n; integer a,b,n;
fourier := 2*3- W59265359*(sin(a)+sin(b))

exp • 5/n;
goto end;
end: end;

The result and "read (variable list)" statements require
more than one corresponding statement in ALGOL.
Therefore, when they are used inside conditional state-
ments, a compound statement must be introduced,
adding a further complexity to the routines dealing with
conditions. For example:

read (a, b, c) if n < 0

becomes

if n < 0 then begin a:= read; b:= read; c:= read;
end;

When, during the "scan and output" routine, a name
occurs, an entry is made to routine "name"; this deter-
mines the name's type, e.g. integer or real, array,
routine, or switch. If it is an array name, the round
brackets are converted into square brackets by a bracket
count similar to that described for modulus signs. If
the name is a function, then a check is made whether it
has any parameters. If so, the termination of each
parameter expression is noted, a flag set and each
parameter expression treated as a new instruction to be
scanned and output. Any parameter indicated by the
property list to be an addr type is transformed into an
addr function entry. For example, from the routine
definition

routine mat add (addr s\,s2, si integer m, ri)

the following call

mat add (a{\, 1), b(\, 1), c(l, 1), m, ri)

becomes

mat add (addr(a[l, 1]), addr(b[l, 1]), addr(c[\, 21]), m, ri)

Phase 4
By the end of phase 3 the translator could do the

work for which it was intended. The only facilities
needed to run the translated program were: a re-
arrangement of the block structure to ensure that all
procedure declarations appeared at the head of the block
in which they occurred, and the provision of input,
output and other procedures corresponding to the
standard routines available in Atlas Autocode. This
reshuffle also enables the translated program to be
improved by removing unnecessary begins and their
corresponding ends, and jumps to the next instruction—
these may be introduced by the translation of the
delimiter words result and return. As a further
sophistication, the program text could be edited at this
stage to give a more pleasing lay-out.

The translator's original target language was Atlas
ALGOL. Recently, however, a new line-reconstruction
input package for the KDF9 Post system has been written
in the Cripps Computing Centre to avoid the expense
of recoding thirteen seven-hole Atlas-coded Flexowriters.
An outcome of this was the acceptance of Atlas ALGOL
program texts for input to the KDF9 ALGOL compilers.
The main difference between the Atlas and KDF9
ALGOL implementations is the input and output
procedures; a standard set of Atlas type input and
output procedures was prepared so that Atlas ALGOL
programs could be run without any change. It follows
that the majority of the input/output procedures needed
by the translator are available, since the input and
output subroutine for Atlas Autocode and Atlas ALGOL

358

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/353/390215 by guest on 19 April 2024

are similar. Some alterations are necessary; for instance
"read (variable list)" and "print fl (r,6)" and "newlines
(10)" which become on translation "print (r, 0, 6)" and
"newline (10)" in Atlas ALGOL.

Atlas Autocode has further standard facilities for
handling symbols, but these were rewritten in terms of
the two basic routines "read binary" and "punch binary".
These two routines read in or punch single characters
from or onto paper tape. These, together with "write
text", are the only routines which are machine-dependent
in the translator.

Run-time differences

There are three fundamental differences, two involving
the cycle and the corresponding for statement. The first
arises from the interpretation of the cycle and for
statement parameters. The Atlas Autocode increment
and final value parameters in the cycle instruction are
evaluated on entry to the loop and remain fixed through-
out the evaluation of the loop. But the for statement's
corresponding parameters are re-evaluated each time
around the loop. Therefore Atlas Autocode programs
which use the permanency property of the increment
and final value become logically incorrect ALGOL
programs on translation. Fortunately Nottingham
programmers seldom achieve such sophistication. The
second arises in that the ALGOL 60 report specifies no
particular value for the loop variable at the natural
conclusion of the loop. The third (pointed out by
Mr. R. A. Brooker, of Manchester University) is con-
ceptually similar to the evaluation of the cycle—for loop
parameters. Routine parameters which are passed
down by name in Atlas Autocode have any arithmetic
expressions in the name of a variable (e.g. indices in
array elements names—a(i+2)) evaluated on entry
and the variable name passed down remains the same
throughout that entry. ALGOL instead evaluates the
arithmetic expression in the name every time the name
is used in the procedure. Consequently it is possible to
change the variable being passed down during the life
of a procedure (Jenzen's Device).

The example illustrates this difference

begin
integer i; array A(\ :10)

References

Atlas Autocode to ALGOL 60 translator

(real name x routine Y)

end
i=2; Y(A(iJ)

gives A(2)=\ whereas the ALGOL equivalent gives
-4[1]: = 1; as the value of the index "/" will have changed
before the assignment of the value 1.

Conclusion

The exercise has proved successful. At one time, it
appeared that the Atlas Autocode-KDF9 Compiler
and operating system provided by the Edinburgh
University Computer Unit might make the translator
redundant. In fact, it has had the opposite effect. In
the past, Nottingham users have been discouraged from
taking advantage of the Atlas Autocode programming
language, fearing that their programs would be useless
elsewhere. Now they have confidence that at any time
their programs can be translated into the internationally
accepted ALGOL standard.

Many user programs have been translated. A few
required minor modifications because of their use of
numerical character values, before they successfully
translated. Only one program proved difficult to
translate, because it made extensive use of array fns.
All of the programs ran correctly and appeared to have
none of the run time differences discussed in the previous
section.

Versions of the translator exist in Atlas Autocode and
in ALGOL. The translator was originally written to
provide Atlas ALGOL object programs, but it is easily
modified to match the ALGOL implementations on
other machines.

Acknowledgements

The author would like to extend his thanks to Dr.
M. L. V. Pitteway and Dr. C. A. G. Webster for dis-
cussions which greatly benefited the writing of the
translator. He is also indebted to Mr. A. Chandler
and other staff in the Cripps Computing Centre for help
in the programming preparation and editing, and to the
Director and staff of the Manchester Atlas Computer
Laboratory for assistance in the running of the programs.

ALGOL Paper No. 10 (1966). Atlas Computer Laboratory, Chilton.
BROOKER, R. A., MACCALLUM, 1. R., MORRIS, D., and ROHL, J. S. (1963). "The Compiler Compiler", Annual Review in Auto-

matic Programming, Vol. 3.
BRATLEY, P., REES, D., SCHOLFIELD, P., and WHITFIELD, H. (1965). Atlas Autocode Compiler for KDF9, Edinburgh University
BROOKER, R. A., and ROHL, J. S. (1965). The Atlas Autocode Reference Manual, Manchester University
BROOKER, R. A., ROHL, J. S., and CLARK, S. R. (1966). "The main features of Atlas Autocode", The Computer Journal, Vol. 8

p. 803. '
Councilof Scientific Policy, University Grants Committee (1966). A Report of a Joint Working Croup on Computers for Research,

FOXLEY, E., and NEAVE, H. (1965). Introduction to Programming in ALGOL, Nottingham University
LUNNON, W. F., and RIDING, G. (1965). The Atlas Autocode Mini-Manual, Manchester University.
NAUR, et al. (1963). "Revised report on the algorithmic language ALGOL 60", The Computer Journal, Vol. 5, p. 349.

359

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/353/390215 by guest on 19 April 2024

