
The Atlas ALGOL preprocessor for non-standard dialects

By F. R. A. Hopgood and A. G. Bell*

This paper describes the preprocessor written to replace the original input routine of the Atlas
ALGOL compiler. The main purpose of this preprocessor is to allow programs punched in a
wide range of conventions and codes to be run, without change, on Atlas.

1. Introduction

In the summer of 1964 the Atlas Computer Laboratory
accepted delivery of the S.R.C. Atlas and started to
provide a service to the Universities, Colleges of
Technology and some Government Departments. The
service was intended to cater for programs which were
either too large or, in some way, too awkward to be
run on the customer's own computer. The bulk of the
work originally programmed for other computers was
written in the three languages Mercury Autocode,
FORTRAN and ALGOL.

Mercury Autocode was acceptable on Atlas with
virtually no change as a compatible Atlas EMA
(Extended Mercury Autocode) compiler had been pro-
vided by I.C.T. Ltd. FORTRAN programs tended to
require slight modification for, although incorporating
many dialects as subsets in the HARTRAN system,
the compiler did not accept every dialect. However,
almost all FORTRAN programs are punched on cards
with standard punching conventions so that changes,
when required, tended to be systematic and easily made
by card replacement.

The situation for ALGOL was the worst. The two
machines for which ALGOL programs were most
frequently written were the English Electric KDF9 and
the Elliott 803. In each case both the input/output
facilities provided and the punched form of the program
were completely different from the Atlas ALGOL
conventions. The Atlas compiler had a small set of
input/output procedures reminiscent of Mercury Auto-
code. The KDF9 set was more comprehensive including
extremely flexible formats for output and also magnetic
tape procedures. The Elliott 803 dialect included two
non-ALGOL statements read and print. These state-
ments could have a variable argument list consisting of
expressions, strings and procedure calls. Furthermore,
whereas the Atlas compiler only accepted I.C.T. 7-hole
tape the KDF9 programs were punched on 8-hole tape
and the 803 programs on 5-hole tape.

The preprocessor was therefore initially designed to
translate these two dialects into a form acceptable to
the Atlas compiler. Also, the possibility of readily
incorporating additional dialects of ALGOL, if required,
was borne in mind.

* Atlas Computer Laboratory, Science Research Council, Chilton, Didcot, Berks.

360

2. Atlas ALGOL compiler
The Atlas ALGOL compiler provided by I.C.T. Ltd.

was written using the Compiler Compiler of Brooker and
Morris (1963). The compiler is basically a two-pass one
producing reasonably efficient code without spending
too much time in compilation. It loads a set of pre-
compiled "permanent procedures" as though they had
been defined in the block surrounding the actual
program.

The compiler accepts programs punched on 7-hole
paper tape one character of which is a moveable back-
space (BS). Reserved words such as for are punched thus:

f o r BS BS BS UL UL UL
or any other order of punching which would produce
the same printed layout (where UL prcduces underlining).

Due to the form of the Compiler Compiler, the input
routine of the compiler itself does not interface with the
rest of the compiler in terms of ALGOL Basic Symbols
but by character positions on the printed sheet. The
input routine reconstructs the incoming program a line
at a time and then passes on "composite characters"
from this buffered line. A more reasonable interface
for ALGOL compilers is in terms of the 116 ALGOL
Basic Symbols and, before the preprocessor was written,
the compiler was modified so that the output of the
input routine was ALGOL Basic Symbols which were
then converted by an "Interface Table" into the form
required by the compiler. This is slightly inefficient, of
course, but it is hoped eventually to absorb this Inter-
face Table into the compiler by suitable modification.

A diagram of the compiler is given in Fig. 1.

I.C.T
7-hole
tape

Input
routine

Pre-compiled
permanent
procedures

Compiler -

Fig. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/360/390224 by guest on 19 April 2024

Atlas ALGOL preprocessor

3. Strategy
The initial aim was to replace the input routine by a

table-driven routine (henceforth called the preprocessor).
For each possible dialect a set of tables is provided which
defines the type of input and the characteristics of the
dialect, e.g. 5-hole paper tape with space dependent
symbols as in Elliott 803. To load the appropriate
tables a command (Processor Command) is added to
the head of the program and this defines which of the
four available Permanent Procedures should be inserted
around the program. The Processor Command can be
described thus:

INPUT <INPUT TYPE) WITH <PERM TYPE) I/O
PROCEDURES;

The form of the compiler with preprocessor added can
be represented by Fig. 2.

4. Preprocessor tables
Each dialect of ALGOL translated via the preprocessor

has three tables which define the action to be taken on
the input stream.. These tables are:

(a) Initial Input Table.
(b) Single Character Conversion Table.
(c) Composite Symbol Conversion Table.

The Initial Input Table is used to build up a line of
original program in a buffer, marking certain characters
to aid in the later stages of conversion to ALGOL
symbols. Although in general it is not necessary to
build up a complete line before translation can start,
it is necessary for the standard 7-hole tape input which
requires line reconstruction. At the beginning of the
project it was not known whether any other dialects
requiring line reconstruction would need to be accepted
and so, to generalize the approach, all dialects are
buffered a line or card at a time.

The binary value of each character arriving from the
input medium is used to look up the relevant position
in the Initial Input Table corresponding to this character,
and to cause a jump to the address contained therein.
The addresses are to small routines which execute the
appropriate action on the incoming character and the
input buffer.

There are some 30 of these small routines which are
designed to perform a variety of functions. Some
examples are:

1. NORMAL. Store character in buffer, increment
buffer point.

2. IGNORABLE. No action required. Used for
redundant spaces, stop codes and erases.

3. CASE SHIFT. The Initial Input Table is divided
into several sections corresponding to the possible
states of the input stream; a look-up is done
relevant to the position of the section pointer. For
case-shift characters the action is to change the

<Perm type)

<Input type)

Cards
or
tape

Preprocessor Interface
table Compiler

begin

end

Fig. 2

position of the section pointer to either the upper
or lower case section.

4. UNDERLINE. In the preprocessor system this is
an extremely important symbol. Underlining of
characters is represented by setting a marker bit
denoting underline on the corresponding buffer
entry.

The Normal Routine will add the current value of this
bit to the character, before storage in the buffer. For
example, in the KDF9 dialect with non-escape underline,
begin is punched uniquely as b e g i n; the underline
character enters a small routine which sets the underline
bit "on". The normal routine, having stored the next
character complete with the underline bit, automatically
resets the bit to "off". In a dialect which represents
begin as 'begin' the initial prime sets the underline bit
"on" and the Normal Routine will store all characters,
including the bit, until the closing prime resets the
underline bit to "off". The action of the Normal
Routine is slightly different in these two cases, and this
is achieved by setting switches according to the dialect
under consideration.

With the set of about 30 routines the mechanism of the
initial conversion is very flexible. New dialects can be
implemented by defining a new set of Dialect Tables;
there is no further coding required.

The ability to have a number of states of the input
stream can be used for purposes other than case shifts.
Different action on input symbols may be required, for
example, inside string quotes or comments. Specifically,
the case of the I.C.T. 1900 dialect, which allows begin
to be punched as 'bEgln', 'BeGiN' or any other com-
bination of upper and lower case within the primes, was
implemented by making the initial prime cause the
section pointer to access a part of the Initial Input
Table where upper and lower case letters were not
differentiated.

Once a line has been reconstructed in the buffer, the
composite ALGOL symbols, which occupy two or more
locations in the buffer, must be converted to a form the
compiler will recognize. In most dialects almost all the
composite symbols will have been underlined by the
processing described above; hence a test for the next

361

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/360/390224 by guest on 19 April 2024

Atlas ALGOL preprocessor

character in the buffer being underlined would be a good
criterion for judging whether or not the character could
start a composite symbol. This would, of course, be
quite efficient as non-underlined characters could be
assumed to be single characters and converted im-
mediately. However, all dialects have exceptions to this
rule. For example some dialects denote the exponentia-
tion sign by ** and the majority represent := (becomes)
by the two symbols : and = . Therefore the Initial
Input Table was also used to force an underline marker
on every symbol which could possibly start a composite
symbol. In the cases given these would appear as **
and : = in the buffer. Similarly, in a space dependent
dialect, such as Elliott 803, where ALGOL symbols
such as begin are reserved and delimited by spaces or
other non-alphameric characters, then the initial letter
of an alphabetic string would have an underline forced
on it, begin real appearing in the buffer as BEGINREAL.

5. Line translation
The recognition process, when analyzing the buffered

line, can be described thus:

1. If character is not underlined then convert via
Single Character Conversion Table; continue.

2. If next character is underlined then compare
characters in the buffer against entries in the
Composite Symbol Table to see if a match can be
found. If a match is found convert and proceed,
otherwise convert the first symbol using Single
Character Conversion Table; continue.

Both the Composite Symbol and Single Character
Conversion Tables used were, in fact, Computed Entry
Tables (Hopgood, 1966) to ensure that look-up times
were kept to a minimum in the space available. By
careful choice of the method used for computing the
table entry point and the ordering of the symbols in the
table it was possible to get the average number of
attempts required to identify a symbol down to about
1 • 2. Entries in the single character conversion table are,
of course, unique.

The converted forms of the ALGOL symbols are then
passed to the computer itself via the interface table.
The Composite Symbol and Single Character Tables
were produced initially by a process which amounted
to running the preprocessor backwards. The physical
punched form of the ALGOL basic symbols, in the new
dialect, was read in a certain order, the entries cal-
culated, and the binary form of the characters entered
in the table. If no equipment was available to punch
the information then the tables were calculated by
hand.

Space dependent dialects require some modification
of the Line Translation Algorithm described above.
Consider in such a dialect the identifier BEGINA. In
this case after recognition of the Composite Symbol
begin is achieved, it is then necessary to examine the
following character to see if it is alphameric. If it is

then the recognition is not allowed. The most convenient
solution is to have an alphameric marker, in addition
to the underline marker, added to all alphameric
characters, apart from the first, of an alphameric string.
Again, this is readily accomplished by the Initial Input
Table.

6. Illegal ALGOL statements in the dialect
Most dialects tend to have a certain amount of illegal

ALGOL statements or systems information included
with a program. For example, titles or comments are
required before the actual start of the program. In
general these can be removed by fairly simple pro-
cedures—in the case of titles by setting a pseudo com-
ment state and treating the title terminator as a semi-
colon. However, the Elliott dialects have read and
print statements which can only be translated by source
to source transformations. The items in a print state-
ment can be either expressions to be output, text to be
output or calls of setting procedures which locally alter
the output parameter settings. An example of the
Elliott print statement is:

print A, B, punch (2), 'C=' , C;

which would print the contents of A and B on the
currently selected output and then, switching to punch 2,
the text C= followed by the contents of C. The
statement is translated by the preprocessor which switches
to a special state upon encountering print and produces
as output:

begin
start print elliott;
print elliott (A);
print elliott (B);
punch (2);
print text elliott ('C=');
print elliott (C);
terminate print elliott

end;

The names of the procedures are verbose to avoid
clashes with identifiers used in the program. The set of
statements has to be in the form of a compound state-
ment to retain the correct ALGOL form of the program.
The "start" and "terminate" procedures are inserted
for storing and re-storing the global values of the
setting parameters. The Elliott read statement is dealt
with in a similar way.

7. Dialects available
The system came into use in a pilot form in the spring

of 1965 and has been gradually extended until at present
(September 1966) programs written in the following
dialects can be accepted and executed in a single run
without alteration to the program tape or card deck:

1. I.C.T. 7-hole tape.
2. KDF9 8-hole tape.

362

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/360/390224 by guest on 19 April 2024

Atlas ALGOL preprocessor
3. Elliott 5-hole tape (803).
4. Elliott 8-hole tape (503).
5. Atlas cards (a space dependent dialect).
6. I.C.T. 7-hole tape (with upper case delimiters).
7. Elliott cards (basically the Alcor dialect with

Elliott read and print statements).
8. Elliott 8-hole tape (4100).
9. I.C.T. 8-hole tape (1900).

The ease in which additional dialects can be added is
exemplified by the fact that the Elliott 410 form was
available for use within two days of receiving its
definition and upper case delimiters was a record of
only 30 minutes.

The dialects allowed above have different input/output
procedures and it is necessary, at present, to provide in
the system four different sets of permanent procedures.
These are:

1. I.C.T.
2. KDF9
3. Elliott
4. Graph

ALGOL programs written for other computers tend to
use the input/output package defined for the particular
machine so that a strong link exists between the dialect
and the set of permanent procedures used. This could
have been built into the system. However, it was
thought that the flexibility of allowing any of the four
sets of permanent procedures with any of the dialects
was desirable, and this was done. Any user, therefore,
has a choice of input/output procedures to use.

The first three sets of permanent procedures are
described in the manufacturers' manuals. The fourth
set, Graph, is an extension of the I.C.T. set so that, as
well as normal printed output, graphical output on the
Laboratory's Benson Lehner plotter is available auto-
matically.

8. Additional facilities
Once the preprocessor was working in the form

described, it was necessary to add editing and library
facilities to help users to manipulate and alter their
programs with the equipment available at the Laboratory.

8.1. Program listing
The facility of listing the program is necessary to

editing. It was decided that the listing of a program
should be in a standard form independent of the original
layout submitted by the programmer. This has two
advantages. One, the layout of most programs is not
good, especially during the debugging phase, and
programmers welcomed a listing with all the indenting
set correctly. Secondly, as the listing algorithm pro-
duced a unique layout (inserting new lines and spaces
at well-defined positions) there was no need to store
layout information with library and editing text.

A listing of the program is obtained on the line-
printers. Lines can be numbered for editing purposes.
Alternatively it can be punched out on either I.C.T.
7-hole tape or Elliott cards as a conversion mechanism.
Both these forms are re-entrant. Upper and lower case
letters are differentiated on the cards.

8.2. Editing
Commands such as:

delete 10
replace 5 by a:= D;
after 7 insert *:= 0;

are allowed for correcting individual lines.

8.3. Library facilities
Ideally, programmers should be allowed to define and

call library items from magnetic tapes as well as to edit,
compile and execute their programs, all in a single run.
A library item consists of a piece of ALGOL text and
is stored in a packed form of ALGOL symbols on a
magnetic tape. Definition of a library item is produced
by enclosing the piece of ALGOL text in the directives
commence <library name); and define. Insertion of a
library item into a program is by the directive library
(library name); at the required point.

A standard library tape is available containing the set
of algorithms defined in the Communications of the
A.C.M. together with code procedures for system tapes.
The user may define his own library tape, and this
provides a convenient way of storing uncompiled
programs. Having done this then the user may, in later
runs, call this library item, insert corrections using any
of the accepted dialects, redefine the result as either the
same or a different library item, and execute the program.
The original physical program is not required again.
At each debugging run only the corrections need be
input. When the program is fully debugged a copy
can be obtained by the listing facilities or, alternatively,
the program can be compiled and stored on magnetic
tape in binary form. Production runs can then be made
without requiring recompilation.

9. Conclusion
It has been shown that in a period of \\ man years

it is possible to produce a system capable of accepting
nearly all ALGOL programs currently in use in the
British Isles. This has been achieved with virtually no
alteration to the compiler itself. With a little extra effort
(about 8 man months) it has further been possible to
provide a good system surrounding the compiler.

The authors would like to thank J. Clegg and other
members of the staff of I.C.T. Ltd. at Manchester who
provided the assistance necessary to ease the interface
problems. More details of the system are given in the
manuals of reference to the system (Hopgood and Bell,
1966).

(see overleaf for references)

363

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/360/390224 by guest on 19 April 2024

Atlas ALGOL preprocessor
References

BROOKER, R. A., MACCALLUM, I. R., MORRIS, D., and ROHL, J. S. (1963). "The Compiler Compiler", Annual Review in Automatic
Programming, Vol. Ill, p. 76.

HOPGOOD, F. R. A. (1966). "Hash Tables" from A Series of Lectures on Systems Programming, H.M.S.O. (to be published).
HOPGOOD, F. R. A., and BELL, A. G. (1965). "Atlas Algol Processor for Non-Standard Algol Programs, Atlas Computer

Laboratory, Algol Paper No. 7.
HOPGOOD, F. R. A., and BELL, A. G. (1966). "The Listing, Editing and Library Facilities of the Atlas Algol Compiler", Atlas

Computer Laboratory, Algol Paper No. 11.

Book Review

Readings in Automatic Language Processing, edited by David
G. Hays, 1966, 202 pages. (Barking: Elsevier Publishing
Co. Ltd., 80s.)

"The literature in computational linguistics is not yet
sufficiently stable to meet the needs of teachers and students.
Some of the best work has been presented only in semi-
published research reports. No text-book is in print and the
collections of papers available as books are mostly conference
proceedings and too advanced for the student who needs an
introduction to the field. . .

"The selections in this book . . . are generally compre-
hensible to the newcomer. . . . They cover the field as it exists
today, taking a fairly broad view of computational linguistics.

"I have included these papers because they epitomize, in
their various ways, methods, solutions to central problems,
or approaches to the use of the computer as a processor of
natural language. Other papers will undoubtedly refine, or
perhaps supersede, the concepts that the reader can learn
from these pages. But I have tried to choose papers in which
sound concepts were developed with enough richness of detail
to let the reader see how it all works."

These quotations from the dust jacket and from the editor's
preface clearly indicate the purpose of this book. It is a very
worthy purpose and it is amply fulfilled. In his introductory
essay, Dr. Hays places the work of "Computational Lin-
guistics" in the setting of the progress of information process-
ing as a whole. He surveys the various branches of the
subject, many of them potentially of great practical value,
and in doing so identifies the basic ideas which are developed
in the collected papers. It is as well to list these papers here:

(1) Introduction: David G. Hays
(2) Specification Languages for Mechanical Languages

and their Processors—A Baker's Dozen: Saul Gorn
(1961)

(3) Natural Language in Computer Form: Martin Kay
and Theodore W. Ziehe (1965)

(4) A High-Speed Large-Capacity Dictionary System:
Sydney M. Lamb and William H. Jacobsen, Jr. (1961)

(5) Parsing: David G. Hays (1966)
(6) The Predictive Analyser: Susumo Kuno (1965)
(7) Connectability Calculations, Syntactic Functions, and

Russian Syntax: David G. Hays (1964)
(8) The Grammar of Specifiers: David A. Dinneen

(1962)
(9) Research Methodology for Machine Translation: H.

P. Edmundson and David G. Hays (1958)
(10) On the Mechanization of Syntactic Analysis: Sydney

M. Lamb (1961)
(11) Keyword-in-Context Index for Technical Literature:

H. P. Luhn (1959)
(12) Automatic Phrase Matching: Gerard Salton (1965)

(13) A framework for Syntactic Translation: Victor H.
Yngve(1957)

Gorn's contribution (2) serves to introduce the problem of
the description of languages. It sketches a number of tech-
niques for language specification, from natural language to
Turing machines, by way of Backus Normal Form and
incidence matrices. The bibliography leads into the world
of Chomsky and formal grammars and to the theory of
automata. Kay and Ziehe (3) give a very readable account
of a system for encoding a natural language text in a com-
puter prior to processing. The difficulties of creating a
standard internal code are discussed in terms which will be
readily appreciated, particularly by those concerned with
making processors for programming languages.

A full and easily accessible dictionary is an essential part of
a language processing system. In existing computers,
however, there is a danger of a dictionary becoming too
unwieldy in terms of space requirements and access times.
Lamb and Jacobsen (4) give an account of the extremely
ingenious techniques they have developed to achieve both
high economy of storage and reasonable operating speeds.
The papers 5 to 8, which deal with the central problems of
translations require concentrated attention, though they
should not be beyond the reach of anyone with a feel for
languages and experience of programming. On first reading,
the non-specialist will probably benefit by skipping parsing,
predictive analysers, connectability tests, and the grammar of
specifiers, and passing direct to Edmundson and Hays (9).
This paper, originally published in 1958, was the first of the
RAND series on machine translation, and it is remarkable
that eight years later it is still valid. Another paper, even
older (1957) but still fresh, is that by Yngve (13). This marks
the step forward from satisfaction with word-for-word
translation to the concept of full translation "based on a
thorough understanding of linguistic structures, their equi-
valences, and meanings".

Specialist reviewers have written about these papers
separately in the specialist journals. Here we are concerned
with the collection as a whole. Clearly the editor is an
authority in his field, with long and creative experience
behind him. He has displayed his subject in a very simple
and effective way by choosing a dozen papers which span the
field and which stimulate the lay reader's interest. Most of
us find it increasingly difficult to escape from ever narrowing
specialization. A book like this enables us to appreciate, if
only to a limited degree, what some of our fellow-specialists
have been doing. Is it too much to hope that this volume
will start a fashion and we may see equally digestible antho-
logies on, for example, simulation, computer design,... even,
perhaps, programming languages ?

F. G. DUNCAN

364

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/360/390224 by guest on 19 April 2024

