
Compile-time type-matching

By J. B. Hext*

Run-time type-matching is an inefficient process which can be avoided by a suitably structured
language. A procedure is outlined for analyzing a program at compile-time to determine the
types of all its expressions and to insert transfer functions on them where necessary. This is
given a systematic basis by treating the available types as a partially ordered set. Applications
are illustrated from CPL. The treatment is extended to cover structures, arrays and procedures.

If x is an ALGOL variable of type real, the statement

x : = 1

is usually interpreted as the assignment of an integer
constant to a real variable, which therefore requires the
insertion of an integer-to-real transfer function. Many
implementations urge the programmer to write

x : = 1 0

instead, because otherwise the transfer will be made
every time the assignment is executed. More sophisti-
cated versions avoid this inefficiency by making the
transfer once and for all at compile-time. The pro-
grammer is thereby relieved of one rather tiresome
optimizing detail.

If i is an integer variable, then

x := i

also requires an integer-to-real transfer. But in this case
the transfer cannot be carried out at compile-time
because the value of i is not known. However, a good
compiler will insert the transfer function in the program,
so that once again there is no need to check anything
at run-time.

Unfortunately this is not always possible in ALGOL
(see Naur, et al., 1963), since the type of an expression
may be unpredictable. In particular, if / is a formal
parameter called by name its type need not be specified,
and so a run-time check is required. Some implementa-
tions avoid this difficulty by requiring that the types of
all formal parameters be specified. But there still
remains the awkward case of

x := 2 | i

in which the type of the right-hand side is integer if / is
positive but real if / is negative. So once again the need
for a transfer function must be checked at run-time.

It would clearly be possible to remove these features
of ALGOL so that run-time type-checking is no longer
required. The compiler could then carry out the type-
checking by some fairly simple, ad hoc process, since
the range of types is so small. However, in languages
with a greater range of data structures, such as CPL and
PL/1, the problems of compiling become increasingly
complex and a more systematic treatment is required.

The technique described below was originally de-
veloped for CPL. Illustrations will be taken from this
language, since it raises several interesting problems.
But the approach chosen can be used as a basis for
handling any number of types and type-matching
problems.

Features of CPL
The following features of CPL (Cambridge, 1965)

will be referred to.

1. The conditional expression:

B - > £ 1 , E2

This is equivalent to the ALGOL form

if B then El else £2

2. The value of expression:

value of <block>

The block must contain commands of the form

result is E

and the first such command encountered during
execution returns the value of E as the value of the
expression.

3. Initialized declarations:

let i = l ;

r e c / [index «] = « = 0 - > l , « X / [« — 1];

The types of / and / are deduced from the right-hand
sides. Functions enclose their arguments in square
brackets; they are not self-referencing unless preceded
by rec.

4. Structured variables and multiple assignments:
let*, y, z = 0-5, - 0 5 , (1-5, - 1 - 5) ;

x, y := y, x;
z := x + \,y+ 1;

x and y become real, z becomes (real, real). The multiple
assignments have an obvious and very useful meaning.

A type-matching procedure
The action of a type-matching routine, TYM, may be

described in terms of three subsidiary procedures: Type,
Settype and Uptype. TYM analyzes each section of a

* Basser Computing Department, University of Sydney, Sydney, N.S.fV., Australia. Formerly at the University Mathematical
Laboratory, Cambridge, England. This work was carried out at Cambridge under a grant from the Science Research Council.

365

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/365/390244 by guest on 13 M
arch 2024

Compile-time type-matching

program in turn and applies these procedures as
required.

The central operation is to determine the type of an
expression, E, by means of the function Type. This
function not only evaluates the type of E, but also
carries out, as a side-effect, a complete analysis of the
structure of E, inserting transfer functions where
necessary and distinguishing the particular forms of any
polymorphic operators. For example,

Type ['x + 1']

will give the result real. It will also apply an integer-
to-real transfer function to ' 1 ' and replace ' + ' by
'real + ' .

If E involves an expression of the form

value of <block)>

then Type will call in TYM to analyze the block. TYM,
Type, Settype and Uptype are all recursive procedures
defined in parallel.

The operation Settype records the type of each
variable as deduced from its declaration. For example,
the action of TYM on encountering the declaration

is
let x = E

Settype [x, Type [E]]

The complications caused by recursive declarations are
discussed below.

The routine

Uptype [<expression> E, (type), T]

analyzes E in much the same way as Type, but finishes
by inserting transfer functions, if necessary, to give E the
type T. For example, TYM operating on the command

would carry out

if B then do x : = E

Uptype [B, Boolean]
Uptype [E, Type [x]]

Basic types
A basic type describes the nature of a single item of

data, such as a number, truth value or list element. The
basic types in ALGOL are real, integer, Boolean and
string. CPL includes several others such as index,
double, complex and logical. In each case there is a
finite collection of basic types and any operations
involving them can be listed explicitly.

In some other languages the situation is more compli-
cated. For example, in PL/1 (IBM, 1965) a distinction
is made between the type of a quantity and its
representation. There are only four types: arithmetic,
character string, bit string and label. But within one
type there may be many representations. For instance,
the representation of an arithmetic quantity comprises
its base (binary/decimal), scale (fixed/float), mode
(real/complex) and precision. If a programmer does not

specify the representation of a variable, then a set of
default values is assumed; the precision default is denned
separately for each implementation.

It will be seen that the PL/1 notion of representation
covers the CPL distinctions between the types index,
integer, real, double, complex, etc. In both cases, the
type and representation of a variable remain constant
throughout a program (precision in PL/1 can be denned
only by decimal integer constants). For the purposes of
this paper, therefore, no distinction will be made between
type and representation: both concepts will be included
in the term "type".

However, one important feature emerges from PL/1,
namely that the number of basic types can be effectively
infinite. The transfer functions between them therefore
cannot be listed explicitly. Instead, we must assume the
existence of some other technique for denning all the
possible transfer functions. A similar situation arises in
the consideration of type structures, which will be
discussed below.

For the purposes of subsequent development, it is
useful to introduce two special basic types, unknown and
general, unknown may be thought of as the type which
is assumed for every variable before the program is
analyzed. If, when the analysis is finished, any variable
still retains the type unknown, then an error is assumed.
Such would be the case for the declaration

rec x = x;

The type general applies to a variable whose type
varies at run-time. For example, in the declaration

let x = Cond -> true, 2 • 3;

the type of x can only be determined dynamically; but
it is essential to give it some classification at compile-
time, and so it is given the type general. If such dynamic
types are not implemented, then this also causes a
compile-time report.

Partial ordering
It is essential for the operation of TYM that every

expression has a type which can be determined at
compile-time. A case of particular interest is that of
the conditional expression. For example, if i is integer
and x is real, what is the type of

B- •i, x

The answer may be given, as suggested above, that
this must be determined dynamically and that the type
is therefore general. However, it is reasonable, and in
many ways preferable, to say that its type is real. We
choose real rather than integer because it preserves a
higher precision: we do not wish to round off x to an
integer unless we have to.

In general, we may ask, if x, x' have types /, t' what
is the type of

B -> x, x'

366

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/365/390244 by guest on 13 M
arch 2024

Compile-time type-matching

The answer is best given by defining a partial ordering
on the set of all basic types. This is a relation > such
that

(i) for all /, t > t
(ii) if t > /' and t' > /, then / = /'

(iii) if / > /' and /' > /", then t > t"

In this case, the relation t > /' implies that any quantity
of type t' may also be represented as one of type /
without loss of accuracy.

A partially ordered set may be depicted by a Hasse
diagram. Fig. 1 is a diagram for 8 basic types in CPL,
which illustrates the ideas involved. A path from t' to t
indicates t > t'. We say that t is "greater than" /', or
that it is a "higher type than" t'. The path normally
implies the existence of a transfer function between /
and /'.

It is often the case thatt > t' and t' > t; for example,
t = Boolean, /' = real. The point of interest in the
diagram is then their least upper bound, L say. This,
if it exists, is the unique lowest element L such that
L > t and L > t', in this case general. We write

If / > t', then L = t. A greatest lower bound may be
defined similarly.

A lattice is a partially ordered set in which every pair
of elements possesses a least upper bound and a greatest
lower bound. By introducing the types unknown and
general in the above way, we have ensured that the set
of basic types constitutes a lattice.

We may now return to the question—what is the type
of

B -> x, x'

and answer t V /'. Provided that the types are ordered
to form a lattice, this is always well defined. It also
satisfies any intuitive notions in the simple cases.

This concept has other useful applications. For
example, the type of the expression

value of §
result is E\;

result is E2:

result is En §

may be defined as

Type [El] V Type [E2] V . . . V Type [En]

A third application arises in the definition of recursive
functions, as described below.

When the number of basic types is infinite, it is not
possible to display their ordering in a Hasse diagram.
But it will normally be possible to define it by some other
means. The next section illustrates a case in point.

general
I
t

Boolean double complex
I

double complex

real
I
t

index

unknown

Fig.l. - Hasse diagram

Type structure
In CPL, as also in PL/1, a variable may represent

more than one basic quantity. It may be (real, real) or
(Boolean, index) or even (Boolean, (real, real)). This is
especially useful for functions which return more than
one result. For example, integer division normally
yields a quotient and a remainder: the type of its result
is therefore (integer, integer).

If we think of a type t as representing the space of all
quantities of that type, and /' similarly, then the type
(t, t') may be thought of as the Cartesian product of
these two spaces. If z has this type, then its components
may be accessed by a multiple assignment of the form

x, x' : = z

Alternatively, explicit selector functions may be provided;
PL/l's qualified names serve a similar purpose.

The notation used above represents type structures by
means of the LISP notation for lists (see McCarthy,
et al., 1963). The basic types are the atoms; a type
structure is a list of such atoms, running to arbitrary
depth. We may therefore employ the concepts of list-
processing in order to define various operations on type
structures. In the CPL notation, we have two functions,
Hd and Tl (LISP's 'car' and 'cdr'), for accessing the
front member and the remainder of a list. An empty
list is denoted by nil, which is also an atom.

Following Iverson (1962), we say that two types are
compatible if their structures are the same:

Compat [t, t'] = Atom [t] A Atom [/'] -*- true,
Atom [t] v Atom [t] ->- false,

Compat [Hd[t], Hd[t']} A Compat [Tl[t], Tl[t')]

We can extend binary operations to compatible lists by
applying them to pairs of corresponding atoms, t,- and
t'j. Thus we define

(i) / > /' if and only if tt > r', for each /.

367

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/365/390244 by guest on 13 M
arch 2024

(ii) T = t V t' if and only if T is also compatible
and for each i

T, = t, V t',
(iii) There exists a transfer function between / and t'

if and only if there exists one between each tt
and t' f.

Compile-time type-matching

and then return the result R.
If / is a parameterless function, its type may be

denoted by
[nil -> R]

Its application must then be written (in CPL) as

None of these definitions apply if t and t' are not
compatible. The best we can say in such cases is that

/V (' = general

There is an alternative approach which classifies
structures according to the numbers of their atoms.
Thus / and t' are similar if they have the same number
of atoms. Clearly compatibility implies similarity. For
the class of structures containing n atoms there exists
an obvious canonical form, namely the one-level list of
n atoms. A partial ordering of similar types can then
be given in terms of their canonical forms. For example,
the least upper bound of

and

would be

((integer, real), real)

(real, (real, integer))

(real, real, real)

The conversion of a type structure t to canonical form
is given by

Flatten [t] = Null [t] -> nil,
Atom [Hd[t]] ->- Cons [Hd[t],

Flatten [Tl[t]]],
Concat [Flatten [Hd[t]],

Flatten [Tl[t]]]

where Concat [t, t'] = Null [t] -» t',
Cons [Hd[t], Concat [Tl[t], t']]

The inverse operation is similar but rather more
complicated.

This approach allows greater flexibility in the use of
structured variables, though its advantages in practice
are probably not very great. However, despite its
additional complications, it is comparatively easy to
implement, since a program operating with a conven-
tional linear stack mechanism would be using the
canonical forms anyhow.

Functions
The type of a function is a notion which is already

familiar in mathematical logic. If / is a function with
domain D and range R, its type may be denoted by

On encountering an application o f / t o some argument,
x say, TYM will call in Type to determine the type of
the expressionf[x]. Type will first carry out

/ []

On encountering this expression, Type will not carry
out (1) but will simply check that the domain of/is nil.
An attempt to carry out

Uptype [x, nil]

will always cause a report, and in this sense nil may be
thought of as representing the null space.

If/takes another function as its argument, its type is

[[D-+R{\-*R2]

If D is a basic type, we say that/is a function of class 2.
Similarly, if/has the type

we say that it belongs to class n. In this hierarchy the
basic types belong to class 0; the compound type

Oi, h, . . ., tn)

belongs to the class

max [class [/,], class [t2], • • •, class [tn]]

and the function type

belongs to the class

class [D] + 1

Uptype [x, D] 0)

This classification of function types excludes the
possibility that a function can take itself as an argument.
There is a close parallel in mathematical logic, in which
a similar theory of types was introduced to avoid certain
antinomies, such as:

this sentence is not a true sentence

McCarthy (1963) has shown that, by dropping this
classification and allowing functions to take themselves
as arguments, it is possible to introduce the power of
recursion without a recursion operator. But the com-
plications do not justify the step in practice.

A function in CPL is denned by a declaration such as

Iet/[realx] = £

where E is some expression involving x. The domain of
/ is thus specified explicitly, namely real; its range is
Type [El

A problem arises when / is recursive: if E involves /
then Type [E] must be evaluated before the types of all
its components are known. The difficulty may be over-
come by making successive approximations to R. The
first approximation, t0, is unknown. We then define

368

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/365/390244 by guest on 13 M
arch 2024

Compile-time type-matching

= /,_, V Type[E]. . . / > 1
re-assigning /, to R after each evaluation. The approxi-
mations end when

The approximations will always terminate provided
there is an upper bound to the length of paths in the
types lattice. Only the most extreme pathological cases
could cause an infinite evaluation. Normally /, will
give the required result, as in

r e c / [index n] = « = 0 ->• 1, n x / [n — 1]

The method may be extended in an obvious way to
cover any number of functions defined in parallel.

Routines and arrays

A routine is similar to a function, except that it does
not produce any result. Its type is therefore represented
simply as

[D]
where D is its domain.

An array is subject to various operations and restric-
tions which distinguish it from a function. However,
for the purposes of type-matching it can be handled in
much the same way as a function. We therefore give
its type a similar form, namely

[D:R]

where D is the type of its subscript list and R the type
of its elements. For example, the CPL type matrix is
equivalent to

[index, index : real]

This allows for the possibility that arrays should be
subscripted by some type other than index. For example,
a truth table may be regarded as an array with Boolean
subscripts.

Further transfer functions
If a formal parameter is a function, the programmer

is normally required to ensure that its corresponding
actual parameter has the necessary type. However, it is
theoretically possible to allow its type to differ and to
insert a transfer function accordingly. Such a transfer
function would have the form

[/, -> t2]-to-[t3 -»• tA]

Its result, when applied to/(of type [/,
a new function, g say, denned by

g[x] = t2-to-t4 [/[/3-to-f ,[

t2]) would be

The right-hand side, of course, represents the action
taken when / is applied to an argument of type f 3 in a
context which requires a result of type t4: r3-to~tt is
applied to its argument and /2-to-/4 to its result, but /
itself is not affected. The need for such a transfer arises
only in an actual-formal correspondence, as above,
or when assignments are allowed between function
variables.

A similar treatment may be given to routines, but not
to arrays. The type of an array's subscript list cannot be
altered without turning the array into a function.
However, the type of its elements can be changed by
applying the appropriate transfer function to each
element in turn.

Transfer functions such as these, though clearly
definable in theory, are not so easy to implement; nor
would they often be of any essential practical value.
We shall not therefore pursue their basic structure any
further.

Implementation
The treatment of types as outlined above (except for

the previous section) has been used in the CPL compiler
at Cambridge. Transfer functions are automatically
inserted at compile-time wherever necessary, and
executed at compile-time wherever possible.

The type-matching procedures are implemented by
means of list-processing techniques. A syntax analysis
reduces the program to a list structure, which is then
subjected to various processes. One of these is to link
every occurrence of an identifier with its corresponding
declaration. A property list is formed for each variable,
to which TYM adds its type. The type of any identifier
is then immediately accessible in subsequent analysis.

The time and space required for type-matching are
by no means negligible. But the process offers three
major advantages: it relieves the programmer of tire-
some details, it provides a check on various aspects of
his program, and it saves time in execution. By placing
the process on a systematic basis, the way is left open
for the introduction of additional types at a later
stage.

References

CAMBRIDGE (1965). CPL Elementary Programming Manual, Edition II. University Mathematical Laboratory, Cambridge:
internal report.

INTERNATIONAL BUSINESS MACHINES CORPORATION (1965). PL/1: Language Specifications. IBM Systems Reference Library
File No. S360-29.

IVERSON, K. E. (1962). A Programming Language, New York: John Wiley and Sons Inc.
MCCARTHY, J. (1963). "A basis for a mathematical theory of computation", Computer Programming and Formal Systems,

Amsterdam: North Holland Publishing Co.
MCCARTHY, J. et al. (1963). LISP 1.5 Programmer's Manual, Massachusetts Institute of Technology, Cambridge, Mass.
NAUR, P. et al. (1963). "Revised report on the algorithmic language ALGOL 60", The Computer Journal, Vol. 5, p. 349.

369

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/365/390244 by guest on 13 M
arch 2024

