
A general theory of classificatory sorting strategies
1. Hierarchical systems

By G. N. Lance and W. T. Williams*

It is shown that the computational behaviour of a hierarchical sorting-strategy depends on three
properties, which are established for five conventional strategies and four measures. The con-
ventional strategies are shown to be simple variants of a single linear system defined by four
parameters. A new strategy is defined, enabling continuous variation of intensity of grouping by
variation in a single parameter. An Appendix provides specifications of computer programs
embodying the new principles.

Introduction
Terms such as "computer classification" and "cluster
analysis" have been used by divers authors to cover such
a wide variety of fundamentally different numerical
techniques that any attack on the general theory must
specify the precise field under investigation. Classi-
ficatory programs in general can conveniently be con-
sidered as falling into four major groups, viz: (1) Methods
involving simplification, usually by principal component
analysis, followed by essentially subjective decisions;
such are the methods of Tryon (1955) and of Mattson
and Dammann (1965); (ii) Methods resulting in "over-
lapping classifications" such that a given element can
appear in more than one group; examples are the work
on clumps by Needham and his collaborators (Needham,
1962; Needham and Jones, 1964) and by Dale et al.
(1964), the "agreement analysis" of McQuitty (1956) and
the "concentration analysis" of Tharu and Williams
(1966); (iii) Divisive methods such as association-
analysis (Lance and Williams, 1965), dissimilarity
analysis (Macnaughton-Smith et al., 1964), and the
methods of Rose (1964) and of Edwards and Cavalli-
Sforza (1965); (iv) Agglomerative methods. It is solely
this last group that we discuss in this paper.

The agglomerative strategies (which are always
polythetic) can themselves be subdivided; and we shall
adhere to the distinction made in our previous paper
(Lance and Williams, 1966o): by clustering strategies we
imply those that optimize some property of a group of
elements; by hierarchical strategies those that optimize
the route by which groups are obtained. Hierarchical
strategies have attained a far higher degree of elaboration
and sophistication than have clustering strategies; in this
article we therefore propose to outline a general theory
of hierarchical strategies, and shall defer consideration
of clustering strategies until a subsequent communicacion.

All such methods involve two considerations. First,
there is defined a measure of group-density or of inter-
group likeness. Examples of the latter type of measure
(the so-called "similarity coefficients") are legion; the
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best-known have been reviewed by Goodman and
Kruskal (1954, 1959), Dagnelie (1960) and Sokal and
Sneath (1963), but it is doubtful whether even these
extensive collections are complete. For general con-
sideration, suppose that two groups (/) and (_/) fuse to
form a group (k); then, extending (and slightly altering)
the symbolism of Williams, Lambert and Lance (1966),
we shall need to distinguish between three types of
measure: (/)-measures, which define a property of a
group, (/,y)-measures, which define a resemblance or
difference between two groups, and (/ j , &)-measures,
which define some difference between the original two
groups, considered jointly, and that formed by their
fusion. Of these, (Z)-measures are confined to clustering
techniques except in so far as they may be incidentally
required in the course of calculation of (ij, &)-measures.

Secondly, the chosen measure has to be incorporated
into a "sorting strategy" whereby groups of elements
are extracted. Selected sorting strategies have received
some comparative study (Sokal and Michener, 1958;
Sokal and Sneath, 1963; Williams and Dale, 1965;
Williams, Lambert and Lance, 1966), but until recently
have been regarded as separate and largely unrelated
systems. In a recent brief communication (Lance and
Williams, 19666) we have pointed out that the five
best-known hierarchical strategies are, for at least one of
the (/,y)-measures, variants of a single linear system
which will, moreover, generate an infinite set of new
strategies. It is with the further generalization of this
system that we are now concerned.

General properties
The properties of sorting strategies are not invariant

under change of measure, and the measures to be
considered must therefore be declared. We shall confine
our attention to the four measures of our previous
paper (Lance and Williams, 1966a); of these, three
(Euclidean distance, the correlation coefficient and the
"non-metric coefficient") are (i,y)-measures and can be
considered jointly. The fourth, the information statistic
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Classificatory sorting strategies

in the form of information-gain (A/), is an (ij, k)-
measure, and will be considered separately. We shall,
for convenience in exposition, use a spatial model; but
there would be no great difficulty in translating the
concepts we shall use into a probabilistic context such
as is used, for example, by Macnaughton-Smith (1965).
We believe that the general properties of hierarchical
strategies can usefully be regarded as of three types,
which we consider in turn.

(a) Combinatorial or non-combinatorial. We assume
two groups (i) and (j) with n, and n} elements respectively
and with inter-group distance an (/,y)-measure denoted
by d-,j. We further assume that dtj is the smallest
measure remaining in the system to be considered, so
that (/) and (j) fuse to form a new group (k) with nk
(=n, -f«,-) elements. Suppose the matrix with all d,j as
entries to be held by columns, with the n, values as an
additional row, and consider a third group (h). Before
the fusion, the values of dhh dhj, dih n, and nj are all
known and are all included in the (i) and (j) columns of
the matrix. If dhk can be calculated from these five
values, than a (k) column can be derived from the
original (i) and (j) columns; the computer need operate
only on pairs of columns and, since all measures can be
calculated from pre-existing measures, the original data
need not be stored after the first set of measures has been
calculated. Such a strategy we call combinatorial;
our original linear example postulated the relation

dhk = acidhi + ocjdhj + fSd,j + y\d,,i — dhJ\ (1)

where the parameters <x;, a,-, j8 and y determined the
nature of the strategy. We also pointed out that when
y = 0 the string of measures associated with successive
hierarchical fusions will be monotonic provided that

(a; + a, + jS)> 1. (2)

In contrast to such a system, a non-combinatorial
strategy is one in which the new measures cannot be
calculated from the old, so that the data must be retained
for the calculation of measures required later in the
analysis. Combinatorial strategies have manifest com-
putational advantages.

(b) Compatible or incompatible. A compatible strategy
is one in which measures calculated later in the analysis
are of exactly the same kind as the initial inter-element
measures; they have the same dimensions (if any), are
subject to the same constraints, and can be illustrated by
an exactly comparable model. An incompatible strategy
is one in which some at least of these properties are lost;
the ensuing difficulties in interpretation render in-
compatible strategies undesirable.

(c) Space-conserving or space-distorting. The primary
inter-element measures may be regarded as defining a
space with known properties. When groups begin to
form, it does not follow that the inter-group measures
define a space with the original properties. If they do so,
and the original model remains unchanged, we describe
the strategy as space-conserving. However, with certain

strategies the model will behave as though the space in
the immediate vicinity of a group has been contracted or
dilated; these are the space-distorting strategies. In a
space-contracting system a group will appear, on
formation, to move nearer to some or all the remaining
elements; the chance that an individual element will add
to a pre-existing group rather than act as the nucleus
of a new group is increased, and the system is said to
"chain" (for a measure of chaining, see Williams,
Lambert and Lance, 1966). In a space-dilating system
groups appear to recede on formation and growth;
individual elements not yet in groups are now more
likely to form nuclei of new groups. Such a strategy
will group any data for which all d,j are not identical.
It is inherently likely to produce "non-conformist"
groups of peripheral elements; an example is given in
Watson, Williams and Lance (1966).

We now proceed to examine the major existing
strategies with these considerations in mind.

Standard strategies
(a) Nearest-neighbour. This is the oldest of the

conventional strategies. The distance between two
groups is defined as the distance (normally an (i,j)-
measure) between their closest elements, one in each
group. It is combinatorial, in that it is only necessary
to pick out the smaller measure on fusion; it is im-
mediately derived from Eqn. 1 by the condition
(a. = aj = +i; fi = 0; y = —i). It is compatible
under all (/, y)-measures, since all inter-group measures
are to be found in the initial inter-element matrix. As
a group grows it must appear to move closer to some
elements and further from none; it is thus a space-
contracting strategy, and its consequential chaining
tendencies are notorious (vide, e.g., Williams, Lambert
and Lance, 1966).

(b) Furthest-neighbour. This was suggested (in lift.)
by P. Macnaughton-Smith for possible use when a
relatively intense grouping strategy was needed. It is
the exact antithesis of the foregoing, in that the distance
between two groups is now defined as that between the
most remote pair of elements, one in each group. It,
too, is combinatorial and is derived from Eqn. 1 by the
condition (a, = ay = +i; ]8 = 0; y = +±); it is
similarly always compatible. Since on growth a group
will recede from some elements and move nearer to
none, it is markedly space-dilating.

(c) Centroid. The earliest use we know of this
strategy is that of Sokal and Michener (1958) under the
name "weighted-group method". Algebraically, the
group is considered as defined in Euclidean space and is
replaced on formation by the co-ordinates of its centroid.
Its combinatorial properties are not invariant under
change of measure, and we now proceed to establish
these for our three (/,y)-measures.

(i) Squared Euclidean distance. Since this is additive
over attributes, we need consider only a single attribute
x. Let the co-ordinates of the centroid of (i) be denoted
by Xj. Then the centroid of (k) will be at (/i,x, + njXj)/nk
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Classificatory sorting strategies

and, by definition,

By multiplying up and rearranging it is easily shown that
the right-hand expression is identically equal to

nk "• nk "J nk nk "

The strategy for this measure is thus obtained from Eqn. 1
when

a / = = ni/n
k>

 ay = "y/"*j j3 = —<XjOCj and y = 0. (3)

(//) Correlation coefficient. The problem of correlat-
ing sums of elements seems first to have been posed and
solved by Spearman (1913); but his familiar solution
requires access to the complete set of initial measures.
The measure can be made combinatorial by storing the
appropriate covariances and variances in place of
correlation coefficients and group-sizes. We write
covl7 for the covariance of (i) and (;), and v, for the
variance of (i); the correlation coefficient is constructed
when required from the definition rtJ = coVy/O^-)1'2.
From the definitions of the quantities concerned, it is
easily shown that

COV/,fc = COVA/ COV
W

vk = vt +Vj +2 coy ij.

These two equations will serve to define a combinatorial
solution, although this cannot be based on the correla-
tion coefficients themselves, and cannot be derived from
Eqn. 1.

(HI) Non-metric distance. A combinatorial solution
for this measure would require a solution of the following
problem: given real positive quantities a, b and c, and
given the values of \a — b\ and \a — c\, to derive the
value of |(a - b) + (a — c)\. This is obviously im-
possible; there is therefore no combinatorial centroid
solution for this measure, and the original data must be
held in store.

The centroid strategy is compatible for all coefficients
and is space-conserving. The ensuing simplicity of the
overall model has not unnaturally tended to endear the
system to users, but the strategy is not without inherent
disadvantages. In particular, the monotonicity require-
ment of Eqn. 2 is not met, and reversals, particularly
with some measures, can be extremely troublesome
(Williams, Lambert and Lance, 1966).

(d) Median. A further disadvantage of centroid is
that, if n, and «y are very disparate, the centroid of (k)
will lie close to that of the larger group, and remain
within that group; the characteristic properties of the
smaller group are virtually lost. (It is for this reason
that Sokal and Michener, 1958, described it as a
"weighted" strategy.) The strategy can be made in-
dependent of group size by arbitrarily putting n, —- w,;

the apparent position of (k) will now always lie between
(0 and (J), and the parameters of Eqn. 3 reduce to
«,- = <xj = +i; j8 = — i; y = 0. In the Euclidean
model, the new group is sited at the mid-point of the
shortest side of the triangle defined by (/), (j), (/?);
dhk lies along the median of this triangle, and it is for this
reason that Gower (1966), who first suggested this
strategy, proposed the name "median", and derived its
properties from the theorem of Apollonius. It is
available as an optional strategy in the mixed-data
program CLASP on the Rothamsted Orion computer.

It is combinatorial by definition, and fully compatible
for squared Euclidean distance, which was the case for
which Gower defined it. Since the non-metric measure
can be regarded (Williams and Dale, 1965) as a distance
in a non-Euclidean space, this too may be treated as if it
were compatible. Although the correlation coefficient
could be manipulated (in the form of (1 — /•,,)) in the
system, we are unable to assign to it any useful geo-
metrical meaning and we think the strategy should be
regarded as incompatible for this measure. The
system is space-conserving, though the apparent position
of a group may swing widely. The condition of Eqn. 2
is not met and hence the strategy is liable to failure of
monotonicity.

(e) Group-average. In our preliminary note (Lance
and Williams 1966*) we ascribed this method to Sokal
and Michener (1958). Re-examination of their work
shows, however, that they used it only for element/
group, and not for group/group, relationships; neverthe-
less, the system has interesting properties which will
repay investigation. It is combinatorial over all co-
efficients; for, if shi represents a single inter-element
measure between (h) and (i), we have by definition:

dh, =
1

nhnlc h,k

nk

The system is therefore obtained from Eqn. 1 when
<xi = ni/nk; ocj = nj/nk and £ = y = 0. It is fully
compatible, providing the concept of an average measure
is acceptable. The concept of an average correlation
coefficient is not entirely happy, and a more satisfactory
solution might be provided for this case by putting

d,j = cos £ cos- lsit

L«/«y tj JJ
but we are not aware that this form has been used. The
system is less rigorously space-conserving than is
centroid but, since it has no marked tendencies to
contraction or dilation, it may be regarded as a conserv-
ing strategy. Since «, + a,- + jS = 1, Eqn. 2 is satisfied
and the resulting tree is necessarily monotonic. This
strategy has not received the attention it deserves.
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/3 = + 0.98

Classificatory sorting strategies

/ 3 = + O.5O /3=o

/3—0.25

,-TrCl

/3=-O.5O ,8—1.00

Fig. 1.—Effect of varying (3 in flexible sorting strategy. Data: 20 elements specified by 76 binary attributes. Measure: squared
Euclidean distance

Flexible strategy
By this we mean the system derived from Eqn. 1 by

the quadruple constraint (a, + a,- + /? = 1; a,- = a,-;
j3 < 1; y = 0); it is combinatorial by definition. It is
compatible for Euclidean distance though the strictly
Euclidean property is lost; the 1/0 constraint may fail
with the non-metric measure, but with so arbitrary a
quantity we believe this to be of no importance. It is
meaningless if applied to the correlation coefficient, and
for this measure it is completely incompatible. Its
flexibility lies in its space-distorting properties. As
j3 approaches unity, it is increasingly probable that,
after only a single fusion, the apparent distance from
this first group to the nearest element will always be less
than any remaining element/element distance. The
system, in fact, becomes increasingly space-contracting,
and, apart only from initial ambiguities, can be made to

chain completely by taking /3 sufficiently close to unity.
As jS falls to zero and then becomes negative, the system
ceases to contract and becomes increasingly space-
dilating, and the elements correspondingly more in-
tensely-grouped. In Fig. 1 we show the 20-element
data of our previous paper (Lance and Williams, 1966a)
processed with six values of )3. We have been unable to
define rigorously the value of j8 for which the strategy
could be regarded as space-conserving; comparison
with the known conserving strategies suggests that this
would correspond to a small negative value of jS, but
the exact point probably depends on the values of the
measures under examination.

The information-statistic case
Information-gain is an (ij, &)-measure, being derived

from the information contents before and after fusion
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by the simple relationship

= h - /,• -

If the fusion is between two individual elements, this
collapses, in the conventional (a, b, c, d) notation for a
2 x 2 contingency table, into 2(6 + c) log 2—i.e., into a
multiple of squared Euclidean distance—and is in-
distinguishable from an (/,y)-measure. We can then
distinguish between three situations: (i) Strategies in
which the quantities manipulated never rise above the
element/element level — nearest-neighbour, furthest-
neighbour, group-average. These are combinatorial
and compatible for the information statistic, but its use
would be pointless; the answers would simply be those
for Euclidean distance obtained by an unnecessarily
cumbersome computation, (ii) Median and flexible
sorting. The solution here would be incompatible;
element/group and group/group values would remain
O',y)-measures, and would no longer represent informa-
tion gains, (iii) Centroid sorting. The solution cur-
rently used in information analysis is the non-com-
binatorial centroid strategy, though the centroid proper
is never formed; the definition of the entire group
under study is used. This is the only compatible
strategy available for this measure. The measure is
traditionally based on a probabilistic model; a spatial
model would be quasi-metric, in that the triangle
inequality fails. It behaves, however, as a space-
dilating strategy of considerable power.

Conclusions and recommendations
Computational considerations

To encompass the complete set of six strategies and
four measures here discussed, two separate computer
programs are needed, which we now specify. Program I
would be based on the combinatorial strategy of Eqn. 1;
all six strategies are then available by specifying «.•„ <xy,
£ and y on entry. It would be confined to the (i,j)-
measures Euclidean distance, non-metric distance and
correlation coefficient. Some restrictions on measures
would still be required: the correlation coefficient must
be excluded from median and flexible, and both the
correlation coefficient and the non-metric measure must
be excluded from centroid (the non-metric measure
because no combinatorial solution exists, the correlation
coefficient because it would involve the complication of
providing an alternative to Eqn. 1). Program II would
use the non-combinatorial centroid solution of our
previous paper (Lance and Williams, 1966a), and would
incorporate the information statistic (for binary data
only), and the correlation coefficient and non-metric
measure (for binary or continuous data). This is sub-
stantially our original program CENTROID with the
Euclidean distance facilities removed. Both programs
now exist on the Control Data 3600 computer at
Canberra; a specification for Program I and the revised
specification for Program II are given in the Appendix.

There remains the question of the mixed-data classi-

ficatory program MULT1ST, which is based on the
non-metric measure. The existing form uses the non-
combinatory centroid solution, and is therefore rigorously
compatible and space-conserving. It seems to us
likely that, in the case of data which group poorly, a
user might well be prepared to relax the strict com-
patibility of this solution in order to obtain the increased
grouping potentialities of the flexible strategy. A
version of MULTIST using this strategy has therefore
been prepared, and has proved very successful in
biological applications.

User considerations
A user may reasonably expect to receive advice as to

the measure and strategy most appropriate to his
particular problem. Since the strategy may be restricted
by the measure, the latter should be chosen first. The
only fully-developed mixed-data program at our disposal
uses the non-metric measure; the use of this measure is
therefore inevitable if the mixed nature of the data is to
be preserved. If the user is interested in interrelation-
ships between attributes rather than their absolute
values—if, in taxonometric parlance, he is interested in
"shape" rather than "size"—the correlation coefficient
is appropriate. If the data is binary and a probabilistic
solution is desired, the information statistic should be
used. If none of these restrictions applies, there are
obvious advantages in Euclidean distance, because of its
compatibility over all strategies. In the past we have
not advised its use, since with the centroid solution it
groups only weakly; but the use of the flexible strategy
enables any desired degree of grouping to be obtained.
In the binary case we normally discourage standardiza-
tion of attributes prior to analysis, since the consequent
increase in the importance of the presence of rare attri-
butes, or the absence of common ones, seems to be
unduly exaggerated for most purposes.

We cannot believe that a user who requires a classi-
fication will want classificatory boundaries weakened;
we therefore believe that there is now no place for
space-contracting strategies. Consequently, we submit
that nearest-neighbour sorting should be regarded as
obsolete, and we do not expect there to be any require-
ment for the flexible strategy with positive /?. The main
problem is to decide whether to use a conserving or
dilating strategy; if the latter is desired, and if the
flexible strategy is compatible with the measure in use, it
is then necessary to decide the degree of dilatation
desirable or acceptable.

All dilating strategies are inherently likely to produce
one or more "non-conformist groups", whose members
have little in common beyond the fact that they are
rather unlike everything else, including each other.
Whether this tendency is acceptable, or even desirable,
depends on the precise use to which the classification is
to be put. If, as is common in ecology and land survey,
the analysis is required to reveal discontinuities which
will then be the subject of later study, the discontinuities
are required to be as sharp as possible, and a dilating

377

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/9/4/373/390278 by guest on 13 M
arch 2024



Classificatory sorting strategies

strategy is desirable. It is for this reason that the
powerfully-dilating strategy of information analysis has
been so successful in ecological work. However, if the
project is genuinely taxonomic, in that every element is
to be allocated to a group in the best possible way,
strong dilatation is unacceptable. In such cases we
advise a first run with a space-conserving strategy such as

centroid or group-average; if the resulting picture is too
fragmentary for ease of interpretation, we recommend
the use of sufficient dilatation—i.e., a small negative
value of /?—to "clean up" the hierarchy but no more.
We are currently using )9 = —0-25 for this purpose;
but a firm recommendation as to the optimal value of
j8 must await further experience of these programs.

Appendix

A. Specification of Program CLASS. (Program I of
p. 377)

The rationale of the method and details of the for-
mulae used are given above; this appendix is designed to
give prospective users sufficient information to (a) prepare
data for the program and (b) understand the results.

1. Data preparation. Two types of data are allowed:
(i) precalculated coefficients; (ii) basic data relating to
individuals. Every set of data is preceded by two cards,
the first contains four integers I, J, K and L punched
in the FORMAT (4(14,2X)). I is the number of
individuals, J is the number of attributes, K = 0 for
normal analysis and K = 1 for inverse analysis, and L is
the total number of final groups to be provided on the
plotter. If all groups are required then L = 0, i.e. it
may be omitted. The second card—which comes just
before the data proper—is a title card and may contain
any identifying information and if the data are pre-
calculated coefficients ((i) below) must not contain the
word DATA in cols. 1-4 whereas if the data are basic
((ii) below) the word DATA must be punched in cols. 1-4.

(i) Precalculated coefficients are punched using the
FORMAT (7(F9.5,*,*)). Each row of the upper
triangle of coefficients is punched—omitting the
irrelevant diagonal element and each row must
start on a new card. Cols. 73-80 may be used for
identifying information and, of course, a total of
n(n—1)/2 coefficients are punched,

(ii) Basic data may be either qualitative or numerical.
Pure qualitative data are punched to indicate,

for each individual, which attributes are present,
thus 2-5/8-10/21/34.

This means that in this individual attributes
2, 3, 4, 5, 8, 9, 10, 21 and 34 are present. Note
that the order is unimportant i.e. 8-10 could follow
21 but sequences must be in ascending order,
i.e. 10-8 is not permitted. Blanks may be inserted
anywhere but the . after the last attribute is
essential. The first 72 cols, can be used for data
and continuation cards are allowed, thus cols. 73-
80 are available for identification and are ignored
on output. Each individual must start on a new
card and the final individual has an * immediately
following its . .

Numerical data are in the same FORMAT as
precalculated coefficients; again each individual
must start on a new card.

2. Control Card. A control card precedes the data
deck and others, if required, follow the data. It contains
parameters which determine the analysis to be performed.
They are IC, IP, IW, IS, IO, BETA and are punched
with FORMAT (5(14,2X), F7.0). They have the
following meanings:

ic

0
1
2

IP

1
2
3
4

0
1

is

EFFECT

No more cases to perform—end of calculation.
Use data again for a further case.
Read the data which follows punched in

qualitative form.
Read the data which follows punched in

numerical form.

TYPE OF COEFFICIENTS COMPUTED

Correlation.
Squared Euclidean distance.
Non-metric distance.
Use SUBROUTINE SPECIAL to calculate

coefficients. (This is to allow the user to
extend the options available).

EFFECT

No weighting of data.
Data standardized to zero

variance, for this run only.
mean and unit

TYPE OF SORTING

Nearest neighbour.
Furthest neighbour.
Median (Gower).
Centroid.
Group average (Sokal).
Flexible.
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10

0

1

2

EFFECT

Coefficients are not printed or punched after
they have been computed.

Coefficients are printed and punched and the
analysis is completed.

Coefficients are printed and punched but
analysis not completed.

BETA is the value of that quantity which is used only
in the Flexible strategy i.e. when IS = 6. The field can
be left blank in all other cases.

Many different analyses may be performed using the
same set of data by simply adding control cards.

The IO facilities are included because we often have a
requirement for the coefficients only so that they can be
used for other purposes.

3. Problem size. The maximum problem which can
be accommodated is given in the case of K = 0 (normal
analysis) by

171 + J + I x J + i l 2 + 3 < 17,000
or in the case of K = 1 (inverse analysis) by

17J + I + I x J + +J2 + 3 <17,000.

4. Output

(i) Printed. The first line of output is the identifying
information on the title card. This is followed by
Normal Analysis or Inverse Analysis as appropriate
and the data, which is output in the FORMAT
(10(F9.4, 2X)). This Format is used even when
the data were input in qualitative form. If a
normal analysis has been requested the data are
printed by individuals, i.e. as they are input from
the cards, but, if inverse analysis is required, the
data are output in the transposed form i.e. by
attributes. If IW = 1 the standardized data is
also output preceded by Standardized. At the
top of the next page the type of coefficient used is
printed and this is followed by the sorting strategy
used. Next come the results themselves in the
form

p -\-q = s C

where p and q are the element (or group) numbers
which combine at level "C" to form a new group
numbered s.

If printing of coefficients is requested (IO = 1 or
IO = 2) these are output before the results which,
of course, are suppressed if the coefficients only
are needed (IO = 2).

After the last line of results has been obtained
the next control card is read and the requested
computation is performed. A blank control card
causes termination of the job. If IC = 1 (same
data to be used again) then the data are not output

again but only the identifying information speci-
fying the coefficient and sorting strategy,

(ii) Plotted. An hierarchical table is plotted after
each set of results has been computed. The size
of the table depends on the value of L on the
control card; if L = 0 the whole table is plotted
but if L =£ 0 (but < I or J for normal or inverse
analyses, respectively) then only the "top" L
final groups are displayed. However, in this case,
the constitution of the final groups plotted is
printed on the printer. The use of this facility is
recommended when I (or J) > 20 otherwise the
table becomes a little difficult to interpret.

5. Diagnostics

Problem too large—when the appropriate condition of
section A3 is violated.

Inadmissible case—when, for example, a control card
of the form IC = 1, IP = 1, IS = 4 is supplied. Com-
binations which give the diagnostic are:

Correlation coefficient (IP = 1) with median (IS = 3),
centroid (IS = 4) or flexible sorting /TS = 6) and
Non-metric coefficient (IP = 3) with centroid sorting
(IS = 4).

6. General. Note that it is not possible to perform
an inverse analysis after a normal one and vice versa,
without re-reading the data.

B. Specification of Program CENTBET (Program II of
p. 337)

The theory behind this program is given in Lance and
Williams (1966a) although certain features have been
removed from this latest version because these are now
included, more conveniently, in CLASS.

1. Data preparation. Data are prepared in exactly
the same way as for program CLASS except that there
is no provision for the use of precalculated coefficients.

2. Control card. A control card precedes the data
deck and others, if required, follow the data. These
cards contain parameters which determine the analysis
to be performed. They are IC, IP, IW and are punched
with Format (3(14, 2X)). These quantities are defined
as in specification of CLASS, except that IP = 2 is not
permitted in CENTBET. Furthermore, when IP = 4
the Information Statistic is used but IP = 4 is only
permitted if the data are purely qualitative, i.e. IC = 3.

3. Problem size. The maximum problem that can be
accommodated is given, in the case of K = 0 (normal
analysis) by

181 + J + 1 x J < 17,000

or, in the case of K = 1 (inverse analysis) by

18J + I + I x J < 17,000.

4. Output. This is similar to that described above
for CLASS except that remarks relating to printing of
coefficients do not apply.
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specified; or IP = 4 with numerical data.
6. General. As before it is not possible to perform an

inverse analysis after a normal one and vice versa,
without re-reading the data.

5. Diagnostics
Problem too large—when the appropriate condition of

section B3 is violated.
Inadmissible case—when, for example IP = 2 is
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Book Reviews
Analogues for the Solution of Boundary- Value Problems, by

B. A. Volynskii and V. Ye Bukhman, 1965; 460 pages.
(Oxford: Pergamon Press, 90s.)

This book could be of value to anyone interested in the
solution of partial differential equations with boundary values.
Although the emphasis in the book is on analogue methods
of solution, this is because the authors have found that for
many problems that they have studied in detail analogue
techniques are preferable. Although the book was originally
written in 1960 this first British edition has a specially written
preface and a chapter describing the later work in the USSR.
Even in the original edition the authors made a plea for
hybrid computers, and their desire now is for a hybrid
computer that contains digital, electronic analogue and
network analogue, all fully programmable.

The layout of the book is rather unusual in that after the
introduction in the first chapter the next two chapters contain,
respectively, examples of how problems should be form-
ulated and the mathematical methods available for the
solution of such problems. Chapter 4 deals with the
computational problems, while the following five chapters
deal with specific analogue methods, mainly by the use of
networks.

The book is a pleasure to read; it is written with an
enthusiasm and humility that the translator and editor have
carried over into the present edition so that the book is more
"live" than are many translations. The publisher is to be
complimented on the printing and format. The bibliography
is poor.

J. S. GATEHOUSE
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