
Optimal quadrature formulae

By M. D. Stem*

We define a quadrature formula to be optimal if it minimizes the multiplier E in an error bound
of the form

or (corresponding to p = oo)

for functions x(t) for which the term in brackets is bounded.
In this paper we study the case n = 2 for which we may derive optimal quadrature formulae

for all p, and discuss some of their properties. We conclude that the best choice of p is 2 and apply
this result to obtain formulae for n — 4 and 6, which are shown to be more accurate than formulae
used previously.

1. Introduction
The most commonly used methods for approximate
evaluation of definite integrals up to the present have
been the trapezoid, Simpson and Gaussian rules. Other
formulae exist, such as Chebyshev's, but they have been
of limited value in practice. For most purposes these
methods have been successful, the first two for functions
with singularities (in the complex plane) near the range
of integration, and the last for functions without this
property. That this should be so can be seen from a
consideration of the classical error bounds in the three
cases. (We take m points in each formula and give the

1

11*11, = sup |x(0|.

A function x will be bounded in JJ norm if, for some
constant M,

\x\\p<M.

r1

error bound for x(f)dt.)Jo

(When p — oo this reduces to our ordinary meaning of
boundedness.)

Now if we assume our integration formula is to be
exact for functions whose (n — \)th derivative vanishes
in (0, 1), we know by Peano's theorem (cf. Davis (1963),
p. 70) that the error can be expressed in the form

\\(»\t)y{t)dt
Jo

(1)

12(m - I)2

1
90(m - 1)*

where y(i) can be shown to be of the form

4tx m (* / \n—1

n\ ~ ? A' {n -\)\

where (, - — ' v' ~ ''*'

Trapezoid rule

Simpson's rule

Gauss rule

From these error bounds we see that the trapezoid
rule is going to be better than the others if x"(t)is bounded
in [0, 1], but x(/v)(0 and higher derivatives are not.
Similarly we expect Simpson's rule to be better if x(l>)(f)
is bounded and higher derivatives are not. In any case
if the "size" of the 2/wth derivative increases too rapidly
with m, we should use Simpson's rule rather than
Gaussian quadrature.

We are therefore led to consider quadrature formulae
in which we use information on bounds of some specified
derivative, and we may ask what is the best formula to
use if our function is of bounded /ith derivative. It turns
out to be convenient at this stage to generalize our
meaning of bounded to bounded in norm, and define the
L" norm of a function x(t) by

1 < p < oo where - H—, = 1
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(2)

and A, and t, are the coefficients and points of the
quadrature formula respectively

with /4; —= v (('—) — v (̂ '~T")'

We have a set of subsidiary conditions on the form (2)
which can be expressed as

tn (f / V*— 1 fti (f 1 \n

( « - n\
(3)

leaving 2m — n free parameters among the At and t,,
and so we must clearly have 2m > n for a well posed
problem.
From Holder's inequality we can bound the error (1) by
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Optimal quadrature formulae

and we define our formula to be optimal if the first term
11X011 is minimized with respect to the A{ and tr This
minimal value depends on three numbers n, m and p.
The first, n, which we refer to as the order of the formula
will always be fixed in advance, and m can be increased
to obtain greater accuracy; however, p is to some extent
at our disposal. Sard (1949) suggested that one should
take p = 2 on the grounds of ease of computation. We
shall show that for formulae for n = 2, which are easily
obtained for all p, this choice gives smaller errors for a
large range of functions than/> = 1 or oo, the two other
measures often used. Krylov (1962) derives some
formulae of this type by slightly different arguments
but gives no comparison of their relative merits. We
shall show that for the choice of p = 2, we obtain
formulae that are "nearly" fourth order, in a sense that
will become clear in §7.

2. Optimal quadrature formulae for y(t)eL", 1 < p < oo
We are here considering the case n = 2, so X0 is a

piecewise quadratic with leading coefficient ±, and con-
tinuous at each node tt. Thus in each interval
['/> fi+\] we may write

2X0 = 7,(0 = a, + b,t + t* = (/ - €,Xt - r,,)
where we shall take f, < 17,-, and £, and 17,- are in
[/,-, t,+,] for an optimal formula (Stern (1966)).

Since we have 2(w — 1) independent parameters in
this case, and we know a0 = b0 = 0, am = 1, bm = — 2,
we shall use the remaining ah b{ as our parameters for
minimizing X0-

We may note here that

A, = i(b,-i ~ b,) = Kii + Vi ~ fi-i - Vi-i)- (4)
Now let us determine the optimal choice of X 0 in

the sense of &, i.e. the formula which minimizes the
error bound, obtained by using Holder's inequality.

If El'p is the LP norm of 2X0, then

To minimize E we set

•¥-»
oa,-

From the combination

we obtain

and since /, # ti+u

U- y,ydt + J ytdt \

/ = 1,. . ., m — 1.

(5)

(6)

(7)

(8)

(9)

The first equation of (6) can be transformed using (9)
to obtain

(10)

It follows that

r=-K (11)

where AT is a function of/? but independent of i. A full
discussion of the properties of K is given by Stern (1966)
§V.5.

Since X0 is continuous at t,, we have for i=2, ...,m—\

0, ~ tiKi - Vi) = 0i - £/-i)C- - Vi-i

From (9), (11) and (12) we obtain

2/, = *,+ , + * , _ , . (13)

So, for any second order optimal quadrature formula,
the points at which the function values are taken must
be equally spaced.

Since tm = 1 — t{ by symmetry, we obtain

'/ = '.+;Jr=Vi-2'i) 04)

=Jl + (/ - \)h (15)

where h will be referred to as the step length.
It now remains to evaluate t^. We note that

a0 = b0 = 0 and X0 is continuous at tu from which it
follows that

(16)

(17)

(18)

(19)

(20)

So

we

writing

obtain

, vim •
A i +

U -

2K

± K)}
2K

1

From (4) and (9) we see that
A-, = h

2A + 1

\,m

h.

3. Norms of the remainder
We shall next evaluate the following norms of X0,

Ex = 11X011., E2 = HXOH2, E3 = IIX0IU-
Let us write

K
9 = 1 +2K' (21)
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Then from (9) and (11) we obtain

After some elimination we see that

hi
r

\

'l+t

{t2-

- 26Y + 60(1 -6)-l}

Optimal quadrature formulae

4. Special formulae
We next derive two important special cases:

(22)
(i) p= l,p'= oo

In this case we find from (10) and (11) that K — i
and so obtain a formula for which Ex is a minimum; it
will be referred to as formula 1. The various norms of
y(t) for it are given in Table 1.

( i i ) />=/ / = 2
In this case we find from (10) and (11) that

K = i( \ /3 — 1) and so obtain a formula for which Ei
is a minimum; it will be referred to as formula 2. The
various norms of y(t) for it are also given in Table 1.

whence

Ei = -hh2{2(l -

Similarly

E\ = T

+ 60(1 -6)-l}
+ ih2tt(46 - 1)(20 - I)2.

(23)

(24)

- 6) +1}
+ -hh4t{(26 - l)2(60(l - 0) - 1). (25)

Finally to discuss E3 we observe that \y(t)\ takes its
supremum in [th tt+,] either at r, or f/+, or at the point
at which its derivative vanishes, i.e. t* = •£(?,- + / / + , ) .

yitd = K'/+1) = W\ ~ 0)h2 (26)

y(t*) = Hi - 20)2A2 (27)
whence

£ = f
3

5. Optima] quadrature formulae for y(t)eL'°
We next derive the formula for which E3 takes its

minimum value which was not covered by the previous
work. Since we wish to minimize the supremum of
| j (0 | , we use Chebyshev's theorem, as extended by
Johnson (1960) that y(t) takes its maxima and minima
alternately with equal magnitude N1 and alternating
sign. Since y(t) is piecewise quadratic, these extrema
must come at the points t-, and once in each sub-range
[th ti+,]. In each sub-range y'(i) vanishes at the point

t =

We therefore have

(28)

y(t,) = idi - £•)('.• - vi)

y(t*) = Kv, - £.)2 = ^2-

= N2

= N2

(29)

(30)

(31)

Table 1.—Data for second order formulae

Formula

Midpoint rule

Formula 1

Formula 2

Formula 3

Trapezoid rule

A

1
2

V3
4

1

V6

1

2V2

0

h2

1
24

1
32

1 (\ h r '3^

n , / i i ;./"> /'>^^

. M / \ / Z — 1 — n(Z — V-^//

1
12

E2

h2

1
8V5

32 V V 15 )

1
12V5

1 1,1 - 2hV2^
lev I 15 ;

1
2^30

h2

oo
l 

—

3
32

1
12

1

16

1
"8
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Optimal quadrature formulae

Table 2.—The u. function

m

2
3
4
5
10
15
20
25

oo

/'

0-3660254038
0-3843671526
0-3915674722
0-3954260347
0-4022980811
0-4043735690
0-4053754997
0-4059657054

0-4082482905

p

16
4-8
3-6
3-1
2-4
2-3
219
2-15

2

From (30) and (31) we obtain respectively

y,, - i, = 2NV2
(32)

From equations (32) and (12) we obtain

2t, = /,+ , + / , _ , (33)

and we see that as before the points are equally spaced.
Furthermore it can easily be shown that

N=ih. (34)

It still remains to determine ?, which is done as in §2
by observing that y{t) is continuous at tu so that

tx = Nh = ih (35)

giving a formula of the same form as those obtained for
v(t)cLp, with

K = KV2 - 1)
6 = tf 1 - W2).

This formula, for which £3 is a minimum, will be
referred to as formula 3, and the various norms of y{t)
for it can be found in Table 1. It can be shown (Stern
(1966) §V.5) that it is the limiting case of the lAoptimal
formulae as p —> oo.

6. Error bounds for classical quadrature formulae
It will be seen that the various norms calculated in §3

apply to all quadrature formulae in which the points tt

are equally spaced in some interval contained in [0, 1]
and all the coefficients except Ax and Am are equal. Two
such formulae, which are not optimal, are the trapezoid
and midpoint rules. In the trapezoid rule tx = 0, so
that 0 = 0; and in midpoint rule tx = \h, so that 6 = \.
We therefore include them in Table 1, giving there the
various norms of y{f) appropriate to them for comparison
with our formulae.

Other classical quadrature formulae, such as Simpson's
rule, can be treated in a similar manner (cf. Stern (1966)
§V.6), but the results of §3 are not directly applicable to
them, and so are not included in this paper.

7. The fourth order case
The second order quadrature formula optimal for L"

depends on one parameter A which varies with p. Let
us now define fj. to be that value of A for which the
optimal formula integrates x{i) = t2 exactly (clearly /LA
depends on the number of points m). Then /x must
satisfy

h{fi2h2 n - \)2h2}
m— 1

; 2 0* + '
1 = 2

(36)

This becomes

2(2/i + m — I)3 = 3(2/x -f l){/x2 + (/n + m — I)2}
+ 6(w — 2)ja2 + 6(/M — 2)(m — l)/n
+ (m - 2)(i« - l)(2m - 3) (37)

which on elimination gives

4/x3 + 6(m - l)/x2 - (m - 1) = 0. (38)

This equation has three real roots, two of which are
negative and one which increases monotonically from
i (V3 — 1) to 1/V6 as m increases from 2 to infinity.
The formula for which A = /* will be referred to as
formula 4.

Suppose next that v is the value of A for which the
optimal formula integrates x(t) = t3 exactly. Then v
satisfies

2v1
4

This becomes

-h{v3h3 +(y+m —

+ A
m-\

+ « -1 = 2
(39)

(2v + m - I)4 = 2(2r + l)(v3 + (i/ + m - I)3)
+ A{m - 2)v3 + 6{m - 2)(m - \)v2

+ 2(m - 2)(m - l)(2m - 3)v + (m - 2)\m - I)2

(40)
which on elimination gives

8^4 + 16(w - IV3

- 2(IM - l)i» - (m - I)2 = 0. (41)

This factorizes into

(2v + m- \)(4v3 + 6v\m - 1) - (w - 1)) = 0. (42)

So we see that v = /x, and so formula 4 is in fact fourth
order. In Table 2, we give values of fj. and p for various
values of m, and it will be seen that p decreases quite
rapidly to 2. (p was obtained by using a table for K as
a function of/? given by Stern (1966) §V.5.)

8. Numerical comparison of second order formulae
The formulae 1, 2, 3, 4 and the trapezoid and mid-

point rules were applied to a wide range of functions and
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Optimal quadrature formulae

Table 3

Errors in the evaluation of integrals over [0,1] using second order formulae

INTEGRAND
(INTEGRAL)

t3 log t
(-0-062500)

e'
1 + t

(1 125386)

e-(l-2»)
2

(0-746824)

< 3 - l ^ 7 < - 3 ) +

(0-059524)

it - e-')2
+

- (* - 2e-')2+

(0-078043)

m

5
10
15
20
25

5
10
15
20
25

5
10
15
20
25

5
10
15
20
25

5
10
15
20
25

MIDPOINT RULE

-0001620
-0000413
-0000184
-0-000104
-0-000067

-0001128
-0-000283
-0-000126
-0-000071
-0-000045

0-004950
0-001229
0-000546
0-000307
0-000196

0001101
0-000257
0-000101
0-000048
0-000030

-0-001256
-0-000276
—0000135
-0-000080
- 0 - 000049

FORMULA 1

-0-000734
-0000147
-0-000059
-0-000032
-0-000020

-0-000422
-0-000088
-0-000037
- 0 - 000020
-0-000012

0- 000920
0-000265
0-000124
0-000071
0-000046

0-000536
0-000106
0-000032
0-000009
0-000005

-0-000357
-0-000046
-0-000033
-0-000023
-0000012

FORMULA 2

-0-000400
-0-000053
-0-000016
-0-000007
-0-000004

-0000161
-0-000020
-0-000006
-0-000002
-0-000001

-O-OOO5O7
-O-OOOO65
-0-000020
-0-000008
-0-000004

0-000334
0-000053
0-000008

-0-000004
-0-000003

-0-000033
0-000034
0-000002

-0-000004
0-000000

FORMULA 3

0-000349
0-000148
0-000075
0-000044
0-000029

0000411
0000124
0-000058
0-000033
0-000022

-0003516
-0000741
-0-000310
-0000169
-0-000106

-0-000094
-0-000055
-0000041
-0- 000031
-0-000020

0-000662
0-000197
0-000073
0-000036
0-000025

FORMULA 4

-0-000226
-0-000030
- 0 - 000009
-0-000004
-0-000002

- 0 - 000027
- 0 - 000003
-0-000001
—0000000
—0000000

-0001231
-0-000142
-0-000041
-0-000017
-0-000009

0-000232
0-000041
0-000004

-0-000006
-0-000004

0000132
0-000052
0-000007

-0-000002
0-000001

TRAPEZOID
RULE

0-005082
0001022
0-000424
0-000230
0-000145

0-003527
0-000699
0-000289
0000157
0-000098

-0-015454
-0-003033
-0-001252
-0-000680
-0-000426

-0001907
-0-000453
—0-000213
-0000122
-0-000076

0-003993
0-000789
0000313
0000170
0-000106

the errors obtained are to be found in Table 3. As will
be seen the functions are of a diverse nature, and as
expected, formulae 2 and 4 do much better than formulae
1 and 3, which in turn do better than the classical
formulae. For further results for other functions, cf.
Stern (1966). The difference in error between formula 2
and formula 4 is not on the whole as marked as to
justify the extra work involved in the calculation of /x
for each m, and so it would appear that the L2 optimal
formula is the best to use in practice. This would agree
with Sard's hypothesis (1949) that it is best to use the
norm L2 in the derivation of optimal quadrature
formulae. We therefore shall use this hypothesis to
derive formulae for larger values of n in §9-10.

9. Fourth order formulae
From symmetry considerations we see that if /, is a

point of the formula so is 1 — /, and both have the
same weight Aj. Clearly if m = 2/ + 1, //+, = | .

Taking this into account we derive from (2), for n = 4,

t* - 4 S A,(t - tfo 0 < t <

The condition (4) reduces in both the cases m = 2/
and m = 21 + 1 to

S A,(A ~ t,)1 = -h
i=-l

with, in addition, when m = 21,

S A, = i.
1=1

(44)

(45)

Putting E = 11X011 w e ^ d on integration that
400
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Optimal quadrature formulae

Table 4

Points and weights for optimal fourth order formula for
integrals over [0, 1]

m

2

3

4

5

6

'/

0-211325
0-788675

0-117602
0-500000
0-882398

0-081930
0-347858
0-652142
0-918070

0-064593
0-271163
0-500000
0-728837
0-935407

0-055879
0-229740
0-411764
0-588236
0-770260
0-944121

At

0-500000
0-500000

0-284943
0-430114
0-284943

0-198457
0-301543
0-301543
0-198457

0-156061
0-230694
0-226490
0-230694
0-156061

0-134368
0-188748
0-176884
0-176884
0-188748
0-134368

E

3-22227,0-,

3-26121,0-5

7-68740,0-6

2-69578,0-6

1-27467,0-6

4608 280,?, - 56s, + 56sj - 32sj +

1 (=i
]si + 7sjSf-

where
= i- t,.

(46)

(47)

This function was minimized for m = 3, 4, 5, 6 subject to
the conditions (9) and (10) using Powell's method (1964),
and the resulting points and weights of the optimal
quadrature formulae will be found in Table 4. The
formulae so obtained were then applied, together with
other fourth order formulae to a wide range of functions,
and the error in the integral was calculated in each case,
the results being given in Table 5. It will be seen from
the table that these optimal formulae do give much
smaller errors for any given number of points, m, than
any other formula used. (In this table the four point
and six point Gaussian formulae used are two point
Gauss quadrature applied to two and three sub-intervals
respectively. Similarly the six point Chebyshev formula
is merely the Chebyshev three point formula applied to

Table 6

Points and weights for optimal sixth order formulae for
integrals over [0, 1]

m

3

4

5

6

t,

0-112702
0-500000
0-887298

0071333
0-332634
0-667366
0-928667

0-052451
0-244680
0-500000
0-755320
0-947549

0-049564
0-227731
0-430555
0-569445
0-772269
0-950436

At

0-277778
0-444444
0-277778

0-177605
0-322395
0-322395
0-177605

0-130578
0-237955
0-262934
0-237955
0-130578

0-123081
0-214647
0-162272
0-162272
0-214647
0-123081

E

7-41061,0-7

4-85666,0-s

7-7349510-9

4-96865,0-9

half intervals. This was done in order to obtain fourth
order formulae for comparison purposes. The formulae
due to Sard are given by Meyers and Sard (1950).)

10. Sixth order formulae

By similar reasoning to the fourth order problem we
can show for sixth order formulae that y{t) is given by

720X0 =
it* - 6 S Aft - t,Y+ 0 < t

-1 )«_6 2 A,(l-t-t,y+

(48)

Condition (3) reduces for m = 2l and m = 21 + 1 to

and
i

/=i

(49)

with, when m = 21, in addition

S A, = i. (50)
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Optimal quadrature formulae

Table 5

Errors in the evaluation of integrals over [0,1] using fourth order formulae

m

3

4

5

6

FORMULA

Sard
Chebyshev
Optimal

Sard
Gauss
Optimal

Sard
Optimal

Sard
Chebyshev
Gauss
Optimal

Integral

INTEGRAND

/5 log t

0013337
-0-003399
-0-000624

0-006059
-0000635
-0000115

0000617
-0-000040

0-000314
-0-000241
-0-000130
-0-000023

-0-027778

0-003370
-0-000852
-0000145

0001519
-0000166
-0-000027

0-000144
-0-000010

0-000073
-0-000058
-0-000031
-0-000006

0-222222

e>

0-000581
-0000147
-0-000023

0-000258
-0-000061
-0-000004

0-000020
-0000001

0-000011
-0-000006
-0-000002
-0-000001

0-718282

e-(l-2i)2

-0-042470
-0009137

0-000804

0016275
-0-000241

0-000203

-0-000812
0-000075

-0-000544
-0000093
- 0 - 000062

0-000043

0-746824

* - {fit - D4
+

—0015104
0-003230

-0-000237

-0-005845
0000120

-0-000021

0-000201
0-000015

0-000104
0-000070
0-000060

-0-000001

0-033333

e<

1 + /

0-000570
-0000148
-0-000030

0-000263
-0-000036
-0-000006

0-000029
-0-000002

0-000016 .
-0-000009
-0-000004
-0-000001

1-125386

Table 7

Errors in the evaluation of integrals over [0, 1] using sixth order formulae

m

4

5

6

FORMULA

Lobatto
Optimal

Sard
Chebyshev
Optimal

Sard
Gauss
Optimal

Integral

INTEGRAND

O log t

00015569
-0-0000516

00012192
-0-0004419
-0-0000065

0-0006898
-0-0000203
-0-0000050

-0-0156250

,11/2

0-0001562
-0-0000053

0-0001227
-0-0000441
-0-0000006

0-0000691
-0-0000021
-0-0000005

0-1538462

e<

0-0000010
-0-0000001

0-0000026
- 0 - 0000002

0-0000000

0-0000004
-0-0000000
-0-0000000

1-1782818

e-(i-2/)2

-0-0032352
-0-0000581

- 0 - 0024507
0-0008401

-0-0000111

-0-0013039
-0-0000095
-0-0000084

0-7468241

-0-0062085
0-0000332

-0-0047733
0-0016829
00000168

-0-0026251
0-0000406
00000117

0-0392857

e<
l + i

0-0000129
-0-0000007

00000113
-0-0000037
-0-0000001

0-0000059
-0-0000003
-0-0000001

1-1253861
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Optimal quadrature formulae

Putting E = \\yif)\\ we find on integration

i{720£>2 = 106196 ~ 7 4 k A>^231 ' ms>
. + 495s? - 440s? + 264s? - 96s? + 16s?}

36 ' 2 ' " '
+ n 2 ^^^l1 + - S /M,-s?{462s? - 330s>,

165s]sj - 55s?s? (51)

This was minimized subject to (45) and (46) using Powell's
method (1964) and the resulting points and weights will
be found in Table 6 for m = 3, 4, 5, 6. These formulae
were then applied, together with other sixth order
formulae to a wide range of functions, and the errors in
the calculation are given in Table 7. As in the fourth
order case we see that optimal formulae do give much
more accurate results than any of the classical quadrature
formulae. (The six point Gaussian formula used was
that obtained by applying Gauss three point formula to
half intervals in order to obtain sixth order formula.
The formulae termed Sard's are also the Newton Cotes
formulae in the cases here considered.)
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11. Conclusion
We have shown a method for finding quadrature

formulae that are optimal in the sense that they give
much lower errors for functions of a specific class
(bounded nth derivative). The method also provides an
error bound for such formulae in terms of a bound on
the nth derivative. Here we have only discussed the
cases n = 2, 4, 6, since higher derivatives of the integrand
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optimal formulae for any value of n. The amount of
computation required increases rapidly with increasing n
and m, and such difficulties are discussed by Stern (1966).
where a few formulae for n = 8 and 10 are given.
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Correspondence

To the Editor,
The Computer Journal.

Sir,
I was interested to read the paper by B. J. Allen on "An
investigation into direct numerical methods for solving
some calculus of variation problems", which appeared in
this Journal in August, 1966.

However, once one accepts that the integral must be
evaluated numerically it is surely better to use the Ritz
method combined with a hill-climbing technique that does
not require the evaluation of derivatives. This approach has
been used for partial differential equations by Rosenbrock

and Storey {Computational Techniques for Chemical Engineers,
Pergamon, 1966, p. 115).

I am investigating some boundary value problems for
ordinary differential equations that arise in chemical engin-
eering by turning the problem into a variational one and
using this technique, and have obtained some useful results
which I hope to publish shortly.

Yours faithfully,
H. W. PAKES

University of Technology,
Loughborough,
Leics.
8 September 1966.
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