Optimal gquadrature formulae

Putting E = || »(t)|| we find on integration

1 1 !
106496 ~ 7393 2, A;s8{231 — 396s;

.+ 49552 — 4405} + 2645t — 9657 + 1655}

HI20ER =

36 ! 9 I-1
+ = 3 AL 4 = 3 A;4,5%(462s3 — 330sts;
11 2 [ 77 2 i j j

i>j

-+ 1655357 — 555751 + 11s;5¢ — 53} &)
This was miniinized subject to (45) and (46) using Powell’s
method (1964) and the resulting points and weights will
be found in Table 6 for m = 3, 4, 5, 6. These formulae
were then applied, together with other sixth order
formulae to a wide range of functions, and the errors in
the calculation are given in Table 7. As in the fourth
order case we see that optimal formulae do give much
more accurate results than any of the classical quadrature
formulae. (The six point Gaussian formula used was
that obtained by applying Gauss three point formula to
half intervals in order to obtain sixth order formula.
The formulae termed Sard’s are also the Newton Cotes
formulae in the cases here considered.)
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11. Conclusion

We have shown a method for finding quadrature
formulae that are optimal in the sense that they give
much lower errors for functions of a specific class
(bounded nth derivative). The method also provides an
error bound for such formulae in terms of a bound on
the nth derivative. Here we have only discussed the
cases n = 2, 4, 6, since higher derivatives of the integrand
are usually not convenient to handle. However, the
same methods can be applied in principle to obtain
optimal formulae for any value of n. The amount of
computation required increases rapidly with increasing n
and m, and such difficulties are discussed by Stern (1966),
where a few formulae for n = 8 and 10 are given.
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Correspondence

To the Editor,

The Computer Journal.

Sir,

I was interested to read the paper by B. J. Allen on “An
investigation into direct numerical methods for solving
some calculus of variation problems’”, which appeared in
this Journal in August, 1966.

However, once one accepts that the integral must be
evaluated numerically it is surely better to use the Ritz
method combined with a hillclimbing technique that does
not require the evaluation of derivatives. This approach has
been used for partial differential equations by Rosenbrock
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and Storey (Computational Techniques for Chemical Engineers,
Pergamon, 1966, p. 115).

I am investigating some boundary value problems for
ordinary differential equations that arise in chemical engin-
eering by turning the problem into a variational one and
using this technique, and have obtained some useful results
which I hope to publish shortly.

Yours faithfully,
H. W. PakEes
University of Technology,
Loughborough,
Leics.
8 September 1966.
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