
A note on the asymptotic error constant of a certain method
for solving equations

By P. Jarratt*

A convenient recurrence relation is derived for determining the asymptotic error constant of a
class of rational function iterative methods for solving equations.

1. Introduction
In a recent paper (Jarratt and Nudds, 1965), a method
of solving equations was proposed in which a rational
function of the form

x — a
y bmxm + bm_lx'»-' +

was fitted through m + 2 points

btx + b0
(1.1)

, i = n,n—\,...,n — m—\,

the next approximation being given by xn+ { = a. It
was shown that if the error, eh of the ith estimate is
defined by xt = e,- + 6, where 6 is a root of the equation
f{x) = 0, then asymptotically the errors of the process
derived from (1.1) by using at each stage the latest
m + 2 estimates, satisfy

m + l

i - O
€„_„ (1.2)

where A is a constant depending on the values of the
first m + 2 derivatives of/evaluated at x = 8.

The purpose of this note is to obtain a method for
deducing the actual form of A, which was not given in
the original paper, and which is of importance for
further theoretical and practical investigations.

2. Analysis
We first recapitulate briefly the analysis which led to

(1.2). By fitting (1.1) to the points

(*/,/(*;))> i = n,n— 1, . . ., n - m — 1,

we derive m 4- 2 equations

...,n — m—\ (2.1)
together with the equation

a = xn+u (2.2)

which is obtained by setting y = 0 in (1.1) to predict
the next approximation. (2.1) and (2.2) represent a set
of m 4- 3 equations in the m 4- 2 coefficients a, bh i = 0,
1, . . ., m, and hence for consistency the determinant of
the set must vanish. Using this condition together with
the substitution xt = e; 4- 8, i = n 4- 1, n,..., n—m—l,

and simplifying, we obtain the relation

1 en+1 0 0 0

1 ea fn ejn

1 €„_! / „ _ , £„_,/„_, «

^if — m — 1 .1 n — m — 1 ^n — m — IJn — m — 1 ^n —m — \Jn — m— 1

= 0 (2.3)

from which

_ |e f ef. .eTl„,„_„,_! ^ 4 )

|1 I C I . . . C I | n ( n _ m _ i

where the notation of the paper referred to in the
CO

introduction has been used. Writing now/(*,•) = 2 cfe,

for i = n,n-\,..., n - m - 1, "Where cr =/«(0) /H
and c0 = /(#) = 0 and substituting in (2.4) we have

m+[
«f l + i= n €„_,-

i = 0

X

1

1

0 0

0 0

0 0r ' ? c ' £ f

0 0

er 2 cfe
r+

t

CO

. . . 2crer+"1"1

0 0

. . . 2 0^+"
1 ti,n — m — 1

(2.5)

If we assume c, # 0, as is the case for simple roots, it
is easy to verify that the lowest-order terms in the
development of each of the determinants depend on
alternants of

|1 £ £2 . . . e" (2.6)

Hence

m+l

( = 0

where

en,n_m_l=Max{\en\,\en_l\,...,\

and Km is the asymptotic error constant.
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Solution of equations

3. A recursion for Km

We consider first the denominator of (2.5), and it is
readily seen that the coefficient of (2.6) in this case is
simply cf+1. For the expansion of the determinant in
the numerator of (2.5), however, the pattern is more
complicated as this expansion leads to a large number
of non-zero determinants which are alternants of (2.6),
and it is necessary to consider how the coefficient of
each of these is formed. We begin by remarking that

of the terms of the infinite series 2 cre
r+J~3 which

occurs in the 7th column of the determinant

We now move to the (m + l)th column of (3.1) and
select the term c3em+1 to appear in this position. This
forces the term c,em into the last column, and the per-
mutations possible on columns 2, 3 , . . . , m are now those
associated with Km_2. Hence we get a coefficient cxc3

| 2 |_2 attached to £ e2 e» c m + 1 ||n,n_m_1.| |
Continuing in this way by fixing the term in em+i in
each of the columns in turn, we cover all the possible
permutations of the terms which give rise to alternants
of (2.6), and we derive ultimately the relation

K { T K f K

l 2
1

2 crer + m - > (3.1)

. c

only the
c2e

J~1, . •

j=3,4,...,m+2,
first m—j + 4 terms, namely c^~2,
cm_,-+4e

m + 1, make any contribution to the
set of lowest-order non-zero determinants obtained by
expanding (3.1). In addition, the relevant terms of the

00

series 2 cr*r~' from the second column are c2e,
I

c3e
2, . . ., cm+2em+1. It is now possible to see how

many terms there will be in Km. Starting with the
last column for which jr = m + 2, we see that the only
possibilities in this position are the terms cte

m or c2e
m + l.

If we select one of these, then for the next column with
j = m + 1, for which there are basically three possi-
bi i i '

n+l
K0 + {-

giving

_x — C3Km_2

. (3.2)

Thus by determining Ko we shall have a convenient
method of generating recursively the asymptotic error
constant of any order of rational iteration function
derived from fitting a formula of the type (1.1). More-
over Ko is the error constant obtained from fitting

y = '-—T—, which leads to the well known secant
y p

bilities, Ciem~', c2e
m or c3em+1, there will be again just iteration for which

2 choices, since we must not repeat the selection made
for j = m + 2, as this would lead to a zero determinant.
Continuing in this way we find that for j = m + 2,
m -f- 1, . . ., 4, 3 there are two possible choices available
each time, leaving only one choice for j — 2. Hence
the number of terms in Km will be 2m. We now investi-
gate the actual form of these terms, each of which
consists, of course, of a coefficient multiplying an
alternant of (2.6). Starting again at the last column
with j — m + 2, we select the highest order term,
c2em+1. In consequence no term containing em + 1 may
be used in any of the other columns, and we see that
the remaining possible permutations of terms in
columns 2, 3, . . ., m + 1 are precisely those which would
appear in the development of the lowest-order terms of
the determinant

K -°2
An (3.3)

(3.2) and (3.3) have been applied to work out the first
few asymptotic error constants and these are given in
Table 1.

Table 1

l 2crc-'2 V r e.r +m-3

in

0
1
2

3

c4/c{ — 2c2c3/cf + c\lc\

+ 2c2c4/ci - 34^1c\ + +

which is associated with Km_x. Thus it is clear that
those permutations arising from fixing the term c2€

m+1

in the last column of (3.1) will lead to a coefficient of
c2.cfA'm_I for the factor e c2

. e™+I|«.»-m_i-

It is interesting to note that the expression for m = 1
corresponding to the method of linear fractions is in
agreement with that given in the paper by Jarratt and
Nudds (1965).
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