A note on the estimation of the coefficients in the Chebyshev
series expansion of a function having a logarithmic singularity

By M. M. Chawla*

The estimation of the coefficients in the Chebyshev series expansion of a function has been con-
sidered by Elliot (1964). In this note we extend his analysis to the case of a function having a

logarithmic singularity.

Let f(x) be a function defined for —1 < x < 1, and
let T,(x) be the Chebyshev polynomial of the first kind
of degree n, defined by

T,(x) = cos (n arc cos x). ¢))

If f(x) is of bounded variation in [—1, 1], then we have
f&) = 3 a,T,()

where the dash on the summation sign indicates that
the first term is to be halved. The coefficients are given
(see Elliot, eqn. (8)) by

1 f(2)dz
“nkvEThetvesr @

where f(z) is regular within and on the contour C,
enclosing the interval —1 < x << 1. The sign in the
integrand is chosen so that |z 4+ 4/(z2 — 1)] > 1.

Let us suppose that f(x) = g(x) log (c — x), (c > 1).
In equation (2), we shall now choose as the contour C,
a circle I' : |z| = R described in the positive sense, a
small circle y : [z — ¢] =€, described negatively, and
two line segments AB and CD where AB is just above
and CD just below the part of the real axis x < ¢, and
joining I" with y.

The function f{(z) is regular within this contour. We
assume that f{z) is such that the integral around I’ tends
to zero as R— 0. Since g(2) is regular at z = ¢, the
integral around y will tend to zero as e — 0. Thus in
the limit as R — 0o and € — 0, the only contributions to
a, will come from the integrals along AB and CD.
Taking f(z) = g(z) log (c — z), we find that these two
integrals combine to give

(R g(x)dx
@n == 2Rli>r27 J; V= Dx + /(x2 — Dy)

Putting x = cosh 8, ¢ = cosh «,

o
a, = — 2 lim j g(cosh B)e="8d0. (@)
O—w “a

References

ELLioT, D. (1964).
Math. Comp., Vol. 18, p. 274.
WRIGHT, K. (1966).

Table 1

n ESTIMATED aj ACTUAL a,

2 —0-029412 —0-029437

3 -+0-003362 +0-003367

4 —0-0004325 —0-0004332
5 -4-0-00005934 --0-00005947
6 —0-00000848 —0-00000851
7 +0-00000125 +0-00000129
8 —0-00000019 —0-00000019

Suppose n is chosen and g(cosh 8) is such that the main
contribution to the integral comes from around 6 = «,
and assuming that § — « is small,

a, ~ — 2g(c) J.:—"edO. (&)

Thus, the estimate for the coefficients in this case, for
large n, becomes

2g(c) 1

~ — . 6
o n CE¥ V@ —Dy ©
Proceeding as above, we can derive a similar estimate for

the case of a function f(z) = h(z) log (¢ + z), where h(z)
isregular at z = — ¢, (¢>1). We find, for large n,

2h(—c¢) 1)
n (c+V(E—=Dr
As an example, consider the function f(x) = log (3 - x).

Estimate (7) for the coefficients in this case gives,

2
~f(—_1WnF ———— .,

a, = (1) n(3 + ,\/8)11 (8)
The estimated values of the coefficients given by
equation (8) are compared in Table 1 with the “actual”
values obtained by the method of collocation (see

Wright, 1966). We find that the estimated values com-
pare very well with the actual values.

a, ~ (—1y+!

“The Evaluation and Estimation of the Coefficients in the Chebyshev Series Expansion of a Function”,

““Series methods for integration”, The Computer Journal, Vol. 9, p. 191.

* Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi-29, India.

20z UoJEIN €1 U0 159NnB AG 06E06E/E | 1/7/6/9101ME/|UlW0D/L00" dNODIWapEDE//:SA]IY WO PapEojuMoQ

Algorithms Supplement

Previously published algorithms

The following Algorithms have been published in the
Communications of the Association for Computing Machinery
during the period July-September 1966.

287 MATRIX TRIANGULATION WITH INTEGER
ARITHMETIC

Operates on an m X (n + e) matrix, whose elements are
integers, to reduce the sub-matrix consisting of the first n
columns to upper triangular form and to supply the rank of
this sub-matrix.

288 SOLUTION OF SIMULTANEOUS LINEAR DIO-
PHANTINE EQUATIONS

Seeks the smallest positive integer, d, for which an integer
solution to the equation Ax = bd exists, where A isanm X n
matrix, x is an n X 1 vector and b is an m X 1 vector.

289 CONFIDENCE INTERVAL FOR A RATIO
Finds the (1 — 2 X a) confidence limits for 0/¢.

290 LINEAR EQUATIONS, EXACT SOLUTIONS

Solves the matrix equation Ax = b for A [1:n,1:n] and
x, b[1: n], where the elements of A, b are small integers and the
results are required as ratios of integers. The solution vector
overwrites b and has values given by det A X x, where det A is
the determinant of A and x is the true solution vector. det A
is supplied as an output parameter.

291 LOGARITHM OF GAMMA FUNCTION

Evaluates the natural logarithm of gamma (x) for all x > 0,
accurate to 10 decimal places.

Algorithms

Note on Algorithm 2. FIBONACCI SEARCH, Algorithm 7.
MINX, and the Golden Section search.

K. J. Overholt,
University of Bergen,
Norway.

In his certification (2) of Algorithm 2 Fibonacci Search
(4) Mr. Boothroyd raises the question of the justification of
the apparent complexity of this algorithm, as compared to
his own Algorithm 7 MINX (1). The question seems
appropriate in view of the basic simplicity of the Fibonacci
search: having placed the first dividing point in the given
interval, the following points are placed symmetrically in this
and every remaining interval. The direct application of this
would lead to a much shorter program than Algorithm 2.
The crux of the matter is to be found in the following com-
ment in this Algorithm: * . . . rounding error trouble
may become so evident . . . that it leads to a collapse
of the procedure”. This is indeed true, and necessitates
calculation of the exact dividing ratios F;/F; ., (Fy = F, = 1,
F;,, = F; + F;_,) in every step. The cause of this difficulty
has been analysed by the present writer (3).

414

With this point ini mind the Fibonacci search is really very
efficiently programmed in Algorithm 2. But the necessary
complication of course detracts somewhat from the method’s
theoretical efficiency. This is given by r = 1/F, for an
n-point search, where r is the ratio of the length of the
remaining to the length of the original interval. The first
dividing ratio should then be F,_,/F,, and the last, which
should be F,/F,, must be changed slightly by placing the last
two points a distance € apart. The quantity € represents the
least argument difference which gives an observable difference
in the function values. In actual computation this refinement
is worthless, as a reliable a priori estimate of € usually cannot
be given. More realistically then, for an n-point search
Algorithm 2 starts with a dividing ratio F,/F,,, and re-
nounces on the last e-separation, obtaining a reduction ratio
r = 2/F"+ 1.

As n grows F,/F,,, rapidly approaches the Golden
Section ratio t = 0-618. . . . The algorithm working with
the fixed dividing ratio ¢ is known as Golden Section search.
It is easily programmed; two versions of this algorithm are
given below. 1ts efficiency is » = 1"~ for an n-point search.
Since "1 < 2/F,,,, as is easily proved, it is slightly more
effective than the ‘“e-less” Fibonacci search. If a point
estimate rather than an interval estimate is required, the
situation is reversed. In a Golden Section search the
minimum point found is not in the centre of the resulting
interval, and the distance from this point to the further of
the two boundaries (that is, the maximum error) is greater
than the equivalent Fibonacci distance, in spite of this interval
being slightly larger. (Asymptotically "~ 1F,, {/2—0-9476.. ..
while F, —~1-171. . .) Considering the programming
requirements of the two methods the Golden Section search
would seem to be the most generally useful one.

The Algorithm 7 MINX is very compact. It is, however,
rather inefficient in its use of the computed function values.
An n-point trisection search gives a reduction ratio
r = (2/32. For this to be less than say 10~6 requires
n>> 70. This should be compared to the performance of a
Golden Section search, which to obtain "—1 < 10— 6 requires
only n> 30.

In addition to the references found by the authors cited
the book (5) could also profitably be consulted.

I am greatly indebted to the referee for valuable criticisms
and suggestions, as a result of which the following two
algorithms have been extensively rewritten.

References

1. BootHroYD, J. (1965). “Algorithm 1.
Computer Bulletin, Vol. 9, p. 104,

2. BootHROYD, J. (1965). ‘“‘Certification of Algorithm 2.
FIBONACCI SEARCH"”, The Computer Bulletin,
Vol. 9, p. 105.

3. OvVerHOLT, K. J. (1965). ““An instability in the Fibonacci
and Golden Section search methods”, BIT, Vol. 3,
p. 284.

4. Pixe, M. C., and Pixner, J. (1965). “‘Algorithm 2.
FIBONACCI SEARCH”, The Computer Bulletin,
Vol. 8, p. 147.

5. Wi, D. J. (1964). Optimum Seeking Methods, New
York: Prentice-Hall Inc.

MINX”, The

20z UoJEIN €1 U0 159NnB AG 06E06E/E | 1/7/6/9101ME/|UlW0D/L00" dNODIWapEDE//:SA]IY WO PapEojuMoQ

Algorithms Supplement

Algorithm 16. GOLD

K. J. Overholt,
University of Bergen,
Norway.

real procedure Gold (al, a2, f, delta, fmin);

value al, a2, delta; real al, a2, delta, fmin; real procedure f;
comment This procedure finds by means of the Golden Section
search method an approximation Gold to the minimizing
argument xmin of the real function f(x) of the real variable x
with relative accuracy delta, measured in terms of the original
interval (al, a2) or (a2, al), that is, abs(Gold — xmin) <
delta X abs(a2 — al). An absolute accuracy eps may be
specified by using a procedure call with eps/(a2 — al) instead
of delta. On exit fmin is the corresponding value of f. The
function f is assumed to be unimodal, that is, f decreases
strictly as x increases towards the minimum point, and in-
creases strictly beyond this point. The procedure makes no
attempt to test the assumed unimodality or to test for noise
in the f-values due to rounding errors. If there is any un-
certainty on this point the procedure Goldsec is recommended.
The required number N of evaluations of f is given by tN < delta
where t is the Golden Section ratio t = 0-618 . . .;

begin

real a3, a4, /'3, 14, t; integer n;

t:= (sqre(5-0) — 1-0)/2-0;

comment In a machine of fixed word-length one would sub-
stitute the actual value of t. To sixteen decimals

t =0-618033 988749 894 8. The constant —0-4812 below
equals In(7);

ad:=al + t X (a2 — al); f4:= f(ad);

al:= a2 +t X (al — a2); f3:= f(a3);

for n:= entier (In(abs(delta))/(—0-4812)) — 1 step
— 1 until 1 do

if f3 < f4 then

begin

a2:= ad; ad:= a3; f4:= f3;

al:=a2 +t X (al — a2); f3:= f(a3)

end else

begin

al:=a3;a3:= a4, f3:= f4;

ad:=al + t X (a2 — al); f4:= f(ad)

end;

if 3 < f4 then

begin

Gold:= a3; fmin:= f3

end else

begin

Gold:= a4; fmin:= f4

end

end Gold

Algorithm 17. GOLDSEC

K. J. Overholt,
University of Bergen,
Norway.

procedure Goldsec (a, b, f, delta, noise, al, a2, fmin);

value a, b, delia; real a, b, delta, al, a2, fmin;

real procedure f; Boolean noise;

comment This procedure finds (in the absence of noise, see
below) by means of the Golden Section search method an
interval (al, a2) containing the minimum of the real function

415

f(x) of the real variable x with relative accuracy delta, measured
in terms of the original interval (a, b), that is, abs(a2 — al) <
delta X abs(b — a). An absolute accuracy eps may be
specified by using a procedure call with eps{(b — a) instead of
delta. On exit fmin is the least f-value found. The function f
is assumed to be unimodal, that is, f decreases strictly as x
increases towards the minimum point, and increases strictly
beyond this point. The procedure continuously monitors a set
of four points to detect any violation of unimodality. If this
occurs the Boolean variable noise is set to true and the pro-
cedure exits to the calling program. The interval (al, a2) then
contains the noisy arguments. By a normal exit noise has the
value false. This method will in most cases detect the presence
of noise in the function values due to rounding errors, the non-
observation of which might give a wholly false impression of
the accuracy obtainable. This does not mean that this pro-
cedure is wholly proof against rounding error trouble. It may
still happen that the actual minimum falls outside the interval
(al, a?) found. In such cases noise will usually have the value
true. If rounding error trouble is severe a procedure of
stochastic or least squares nature should be contemplated,;

begin
real a3, a4, f1, f2, 3, f4, t; integer n, nb;
procedure newpoint (ar, at, am, fr);
real ar, at, am, fr;
begin
ar:=am -+ t X (at —am); fr:= f(ar);
if fr << fmin then fmin:= fr
end newpoint;
t:= (sqrti(5-0) — 1-0)/2-0;
comment In a machine of fixed word-length one would
substitute the actual value of t. To sixteen decimals
t =0-618033 988 749894 8. The constant —0-4812
below equals In(t);
al:=a; a2:=b; fl1:= f(a); f2:= f(b);
fmin:= if f1 < f2 then f 1 else 2;
nb:= 1; noise:= true;
for n:= entier (In(abs(delta)){(—0-4812)) step
— 1 until 1 do
begin
if nb << 0 then newpoint (a3, al, a2, 3) else
if nb = 0 then newpoint (a4, a2, al, f4) else
begin newpoint (a3, al, a2, f3); newpoint (a4, a2, al, f4)
end;

if 3 << f4 then
begin

noise:= f4 > f2; if noise then goto Exit;

a2:= ad; f2:= f4;

ad:= a3; f4:=f3; nb:= —1

end else
if f4 < f3 then
begin
noise:= f3 > f1; if noise then goto Exit;
al:=a3;f1:=f3;
a3:=ad;f3:=f4;nb:=0
end else
begin
noise:=f4> 2V f3> f1;if noise then goto Exiz;
al:=a3;f1:=f3;
a2:=ad;f2:=f4;nb:=1;n:=n—2
end
end;
Exit:
end Goldsec

20z UoJEIN €1 U0 159NnB AG 06E06E/E | 1/7/6/9101ME/|UlW0D/L00" dNODIWapEDE//:SA]IY WO PapEojuMoQ

Algorithms Supplement

SUMFAC

J. Boothroyd,
Hydro-University Computing Centre,
University of Tasmania.

Algorithm 18.

Author’s note:—The procedure sumfac is linked historically
with the development of one of the first generation British
computers. As little as twelve years ago, strange as it may
seem now, computers sometimes stood idle for as much as
one-half or even one hour between program testing sessions.
Inasmuch as machines were then less reliable than they are
today, this raised the problem of how to decide whether a
fault had developed during an idle period. On one Deuce
computer a time-filling, self-checking program was devised
to search for amicable numbers, number pairs (a, b) such that
the factors of a, including one but excluding a, sum to » and
vice versa. The program, when stopped, recorded the initial
value to be used on a subsequent restart. The following
driver program in Elliott 503 ALGOL uses procedure sumfac
in an amicable number search over the first 10,000 integers:
TEST AMICABLE;
begin integer a, b, n;
comment here declare procedure sumfac;
for n:= 1 step 1 until 10000 do
begin b:= sumfac(n) —n;
if 5> n then
begin a: = sumfac(b) —b;
if a = n then print a, sameline, b
end
end
end;
The procedure has another use today, to measure the upper
bound of the relative ALGOL/machine-code efficiency of
any particular implementation. The bound tends to an
upper bound as the procedure employs only integer arith-
metic, uses no arrays, or blocks, or other procedures either
simply or recursively. On an Elliott 503 the program takes
116 seconds in ALGOL while the same logic in SAP, the 503
assembly language, is faster by a factor of almost exactly two.
The following amicable and perfect numbers are generated:

6 6

28 28
220 284
496 496
1184 1210
2620 2924
5020 5564
6232 6368
8128 8128

How long does it take on your machine in (a) ALGOL,
(b) machine-code? A FORTRAN version of TEST
AMICABLE takes 93 seconds on an IBM 1130.

integer procedure sumfac(n); value n; integer n;

comment for n > 1 sumfac yields the sum of the factors of n
including 1 and n. For n =1 sumfac:= 1. If the prime

decomposition of n is aPb9 . . . g¥ then the sum of the factors
ofnis
Q+ata+...+a?N+b+b24+...+b9...

AQ+g+e2+...+g7;
begin integer pi, s, d, f, q, t; Boolean newfac;
piir=s:=d:=1;fi=2;q:=n;
newf: newfac:= true;
next: if g > f then

416

beging:=n + f;
if n + g X fthen
begin f:= f - d; d:= 2;
goto newf
end
else
begin if newfac then
begin newfac: = false; pi:= pi X s;

si=1:=1
end;
=t X f,s:=s54+t;n:=gq;
goto next
end
end;
pii=pi X s;

sumfac.= if n &= 1 then pi X (1 4+ n) else pi
end sumfac

Note on Algorithm 4. TWO BY TWO

1. D. Hill and M. C. Pike,
Medical Research Council,
Statistical Research Unit,
115 Gower Street,

London W.C.1.

If either the row totals or the column totals of a two by two
table are equal, then the second tail probability is equal to
the first tail probability whichever method is used to define
the second tail. This situation is likely to occur frequently
and the algorithm is thus much improved by adding
immediately after the label SECOND:

ifrl =r2 v ¢l = ¢2 then
begin
E:=2-0 X sum;
goto EXIT3
end;

This modification also means that there is no danger of
the most significant term of the second tail being omitted
through rounding error.

Note onAlgorithm 2. FIBONACCI SEARCH
and on Algorithm 7. MINX

M. C. Pike,* 1. D. Hill and F. D. James,
Medical Research Council,

Statistical Research Unit,

115 Gower Street, London W.C.1, and
Department of Applied Mathematics,
University of Liverpool.

J. Boothroyd’s certification of Algorithm 2 (1) shows, to
our way of thinking, a misunderstanding of computer arith-
metic as opposed to pure mathematics. Boothroyd desires
to find the minimum of 7x2 4 2x -4, which is at
x = — /7T = — 0-142857142. . . with the function taking the
value 27/7 = 3-857142857.... However, a computer with its
finite word length cannot represent 7x2 4- 2x -+ 4 precisely,
but has to use some function f(x) which will be a good
approximation of 7x2 + 2x -+ 4 though not identical to it.
The FIBONACCI SEARCH algorithm will then be asked
to locate the minimum of f(x) and provided it does so it has

* At present at Pathology Department, Makerere University
College Medical School, Box 2072, Kampala, Uganda.

20z UoJEIN €1 U0 159NnB AG 06E06E/E | 1/7/6/9101ME/|UlW0D/L00" dNODIWapEDE//:SA]IY WO PapEojuMoQ

Algorithms Supplement

worked correctly. No algorithm can use the function f(x)
to find the minimum of 7x2 + 2x + 4.

It will be noticed that the value quoted by Boothroyd as
the function value at all four of his “unsatisfactory’ points
agrees with 27/7 to the number of significant figures the
Elliott 503 is working to. All these points show the same
value of the function f(x), and we cannot say that one point
is correct and another incorrect,

FIBONACCI SEARCH allows for the case where a
minimum is so flat that three adjacent function values are
equal by making a premature exit instead of continuing the
search. The user may wish to know when this has occurred,
since it will usually mean that the minimum point of the
pure mathematical function has not been found to the
accuracy requested. This is the purpose of the formal
parameter prem in the new version of Algorithm 2 suggested
below.

Boothroyd also asks about the circumstances under which
the apparent complexity of Algorithm 2 is justified compared
with the comparative simplicity of Algorithm 7. The answer
is that Algorithm 2 is to be preferred, on grounds of speed,
whenever the function to be evaluated takes a long time to
compute, since the Fibonacci search method minimizes the
number of function evaluations required for a desired
accuracy (2). One may demonstrate the advantage by using
any simple function, but making the machine evaluate it k
times at each function call and noting the effect of increasing k.

On a test, in which the quadratic 7x2 — 14x + 5 was
evaluated k times at each function call, the following times to
find a minimum, to an accuracy of 10~3 in the interval (0, 4),
were observed :

FIBONACCI SEARCH MINX

k TIME IN UNITS OF “INSTRUCTION COUNT”’ ON
THE ICT ATLAS COMPUTER

1 4 5

4 5 9

16 12 25
64 40 90
256 151 351
1024 598 1392

A golden section search is almost as good as a Fibonacci
search in terms of time, but has the disadvantage that the
minimum point found is not in the centre of the interval of
uncertainty.

Algorithm 2 may be considerably simplified by omitting
the inner block with its declaration of the array fibno. The
following new version is more efficient in terms of store.
In terms of time it is effectively identical to the older version.

References

1. BootHrROYD, J. (1965). ‘‘Certification of Algorithm 2.
FIBONACCI SEARCH”, The Computer Bulletin,
Vol. 9, p. 105.

417

2. WILDE, D. J. (1964). Optimum Secking Methods, New
York: Prentice-Hall Inc.

Algorithm 2 (modified).

real procedure Fibonacci search (a, b, eps, fval, prem, f);

value a, b, eps; real a, b, eps, fval ;

Boolean prem; real procedure f;

comment this procedure finds within plus or minus eps the
position of the minimum of the function f(x) in the range
a< x<< b by the optimum minimax method. f(x) must be
monotonic decreasing from x = a to the minimum position and
then monotonic increasing to x = b.

On exit fval contains the function value at the position
Sound, while prem is set to true if a premature exit has been
made or false otherwise. A premature exit indicates that the
minimum is so flat that the accuracy to which the calculations
are performed is insufficient to cut the interval of uncertainty
down to plus or minus eps;

begin
real e, fF1, 12, pl, p2;
integer n, f'1, £2, ¢; Boolean equal
equal: = false;
n:=1;fl1:=2;f2:= 3;
e:= (b — a)leps;
for c:= f1 while /2 < e do
begin
ni=n+1;fli=f2;f2:=c+ f2
end;
p2:=(f1{f) x (b —a) +a;pl:=a+ b — p2;
FLi=f(p1); fF2:=f(p2);
for n:= n step —1 until 2 do
begin
c:=f1;fl:=f2~f1;f2:=c¢;
if 2> ff1 then
begin
b:=p2; p2:=pl;
pl:i=b—{f1{f2) x (b —- a);
F2:=F1; Fl:=f(pl)

end else

a.=pl; pli=p2;

p:=a+ (f1/f2) X (b — a);

Fl:=f2; F2:=f(p2)
end;
prem:= equal N\ 1 = f2;
if prem then goto EXIT;

equal:= ff1 = (2
end;
EXIT: if ff2 < ff1 then
begin

Jval:= [2; Fibonacci search:= p2
end else

Jval:= [f1; Fibonacci search:= p1
end

end Fibonacci search

20z UoJEIN €1 U0 159NnB AG 06E06E/E | 1/7/6/9101ME/|UlW0D/L00" dNODIWapEDE//:SA]IY WO PapEojuMoQ

Algorithms Supplement

Correspondence

The Editor,
The Algorithms Supplement,
The Computer Journal.

Sir,

May I draw your attention to the large number of mistakes
in the published versions of Algorithms 10 and 11. These
show a standard of editing which is not good enough.

In addition to the many typographical blunders there is
one error of content in procedure equipol for which, in spite
of its escape through the meshes of the referee’s net, I accept
responsibility.

The statement arg:= arg — jXh;

should be arg:= arg — jXh — xbase;

This is perhaps a suitable opportunity to criticise more
generally. Algorithm 1 appeared in The Computer Bulletin
of September 1964. Two years later we see the publication
of Algorithm 11. Does this level of achievement justify the
continuation of the supplement? It hardly appears to justify
the efforts of the editor and the several contributors and
referees.

Assuming that 109 of submitted material is published, it
would not have appeared unreasonable two years ago to
expect that, by this time, each supplement would contain
six useful algorithms.

To what extent is the failure to achieve this due to lack of
supporting contributors? Some, no doubt, though it is clear
that you, sir, are called upon, as editor, to perform many
tasks which should be done by contributors and referees.

Here are a few suggestions for improving the ‘“‘turn
around” time in the publication of algorithms,

(a) Contributors should be required:

1. To submit two double-spaced copies of their algorithm
in fully symbol-edited publication ALGOL..

2. To submit in the exact form in which these were run,
two copies of a driver program and tested procedure
together with test data and results.

3. To accept the necessity for re-submission (1 and 2
above) if their contribution is returned for a correction,
however trivial.

4. To accept the responsibility for checking galley proofs
accurately and promptly.

(b) Referees should be required:

1. To have access to the means of testing algorithms for
correct syntax and content.

2. To agree to complete their task within four weeks or
send back the algorithm to you by return post.

So far as the refereeing of papers is concerned, there may be
sound reasons for affording referees the protection of
anonymity. In the case of ALGOL procedures where the
material is more a matter of fact than opinion, there is less
reason for retaining this practice. Referees who consent to
waive this privilege should be permitted to correspond
directly with contributors provided, of course, that copies of
their letters are sent to you for the record. This would
materially assist in minimizing the now intolerably long

418

delay between submission of an algorithm and its final
acceptance or rejection.

J. Boothroyd,
University of Tasmania,
Hobart, Tasmania, Australia.

Editor’s comment

Mr. Boothroyd’s criticisms of the number of printing
mistakes in Algorithms 10 and 11 are fully justified. Steps
have been taken to see that this does not happen again. As
an apology the algorithms are reproduced below, fully
corrected and including Mr. Boothroyd’s amendment.

The standard of material submitted to the Supplement is
very high but the number of submissions is small and they
are usually in the field either of numerical analysis or of
statistics. I should like to see an increase both in the amount
of work submitted and in the scope covered. Efficiency of
computer use should not be a consideration. The Algorithms
Supplement is just as much, if not more, a medium for
communicating ideas as a medium for distributing computer
programs.

The first three conditions suggested by Mr. Boothroyd,
under which authors submit algorithms, are already the
policy of the Supplement. Unfortunately these conditions
are not always met. It has also been agreed that, where
possible, galley proofs will be returned to the authors for
proof checking.

I am fortunate in having a keen, though small, band of
referees to assist. It is very rare that publication is held up
by the referee, except when he is too conscientious and
continues to suggest further improvements. Is this a bad
thing? Again, more offers of help would be appreciated.
As Mr. Boothroyd states, refereeing an algorithm is a matter
of fact rather than opinion and so conscientiousness is more
important than high-level experience.

In addition to the above, I should also welcome contri-
butions of a more general nature concerning possibly the
future and the organization of the Supplement.

Algorithm 10.

real procedure aitken (x,y, arg, n, m); value arg, m, n; array
X, y; real arg; integer m, n; comment array y[0: n] contains
sample values of a function at corresponding values of the
argument contained in x[0: n) which is assumed to have been
sorted in ascending order. The procedure yields an approxi-
mation to the function at the specified value arg by evaluating
an mth order polynomial (m < n). The subset of m+ 1
points used in the evaluation are suitably chosen to be evenly
distributed about the value of arg. If the requested value of
m exceeds n, the assignment m:= n occurs.

For arg < x[0}
x[1], . . ., x[m]
For arg > x[n] the procedure extrapolates using x[n — m),
x[p —m+1],. .., x[n];
begin integer i, j, mless 1; real fi, zi; real array z, f[0: m];

integer procedure setmin (L); label L;

begin integer i;

for i:= 0 step 1 until 7 do if arg < x[/] then

the procedure extrapolates using x[0],

goto found,
i:=n,;

Sound: if arg = x[i] then
begin

Siml:= yli]; goto L

20z UoJEIN €1 U0 159NnB AG 06E06E/E | 1/7/6/9101ME/|UlW0D/L00" dNODIWapEDE//:SA]IY WO PapEojuMoQ

Algorithms Supplement

end;
ii=i—m-+2—1;
setmin:= if i << 0 then 0 else if
i+ m>nthenn — melsei
end setmin;
if m > n then m:= n; j:= setmin (out);
for i:= 0 step 1 until m do
begin
Z[il:= arg — x[j); flil:=yUl =/ + 1
end;
mless 1:=m — 1;
for i:= 0 step 1 until mless 1 do
begin
fii=fli]; ziz=2zli];
for j:=1i 4 1 step 1 until m do
SUl=fi+ zi x (flj] — MNzi — z[j]
end;
out: aitken:= f[m]
end aitken

Algorithm 11.

real procedure equipol (xbase,y, arg,n, m, h); value xbase,
arg, m,n, h; real xbase, arg,h; array y; integer m,n;
comment array y[0: n] contains sample values of a function at
corresponding equal interval values of the argument xbase,
xbase + h, xbase + 2 X h, . . ., xbase + n X h. The pro-
cedure yields an approximation to the function at the specified

value arg by evaluating an mth order polynomial (m < n),
using Aitken’s iterative method. The subset of m + 1 points
used in the evaluation are suitably chosen to be evenly distri-
buted about the value of arg. If the requested value of m
exceeds n the assignment m:= n occurs.

For arg < x[0} the procedure extrapolates using x[0],
x[1}, . .., x[m]
For arg > x[n] the procedure extrapolates using x[n — m),
xin —m+ 1), ..., xin];
begin integer /, j, mless 1; real jh, fi; array f[0: m];

if m > n then m:= n;

i:= entier ((arg — xbase)lh) — m — 2;

ji=ifi<OthenOelseif i +m>nthenn — m

else i;

for i:= O step 1 until m do f[i}:= yli + j];

arg:= arg — j X h — xbase;

mless 1:=m — 1;

for i:= 0 step 1 until mless 1 do

begin fi:= f[i]; jh:= k;

for j:= i 4 1 step 1 until m do

begin
fUL=fi + arg X (fUil — f)ljh;
Jhi=jh + h
end;
arg:=arg — h
end;

equipol. = flm]
end equipol

The Computer Journal

Published Quarterly by

The British Computer Society, 23 Dorset Square, LONDON, N.W.I, England.

The Computer Journal is registered at Stationers’ Hall, London (certificate No. 20825, May 1958). The
contents may not be reproduced, either wholly or in part, without permission.

Subscription price per volume £4 10s. (U.S. $12.60). Single Copies 25s. (U.S. $3.50)

All inquiries should be sent to the Secretary at the above address.

EDITORIAL BOARD

P. G. Barnes R. G. Dowse
D. V. Blake L. Fox

M. Bridger H. W. Gearing
R. A. Brooker P. Giles

E. C. Clear Hill S. Gill

L. R. Crawley J. A. Goldsmith
G. M. Davis E. T. Goodwin
A. S. Douglas T. F. Goodwin

I. H. Gould T. H. O’Beirne
J. G. Grover E. S. Page

D. W. Hooper R. M. Paine
T. Kilburn D. Rogers

J. G. W. Lewarne P. A. Spooner
J. C. P. Miller K. H. Treweek
E. N. Mutch H. P. Voysey
R. M. Needham P. H. Walker

F. Yates (Chairman)

Communications: Papers submitted for publication should be sent to E. N. Mutch, The University Mathematical Laboratory, Corn
Exchange Street, Cambridge. Intending authors should first apply for Notes on the Submission of Papers, as the onus of preparing
papers in a form suitable for sending to press lies in the first place with the authors.

Opinions expressed in The Computer Journal are those of the authors and do not necessarily represent the views
of The British Computer Society or the organizations by which the authors are employed.

© The British Computer Society, 1966.

20z UoJEIN €1 U0 159NnB AG 06E06E/E | 1/7/6/9101ME/|UlW0D/L00" dNODIWapEDE//:SA]IY WO PapEojuMoQ

